Organ-specific cell division abnormalities caused by mutation in a general cell cycle regulator inC. elegans

Development ◽  
2002 ◽  
Vol 129 (9) ◽  
pp. 2155-2165
Author(s):  
Ivana Kostić ◽  
Richard Roy

The precise control of cell division during development is pivotal for morphogenesis and the correct formation of tissues and organs. One important gene family involved in such control is the p21/p27/p57 class of negative cell cycle regulators. Loss of function of the C. elegans p27 homolog, cki-1, causes extra cell divisions in numerous tissues including the hypodermis, the vulva, and the intestine. We have sought to better understand how cell divisions are controlled upstream or in parallel to cki-1 in specific organs during C. elegans development. By taking advantage of the invariant cell lineage of C. elegans, we used an intestinal-specific GFP reporter in a screen to identify mutants that undergo cell division abnormalities in the intestinal lineage. We have isolated a mutant with twice the wild-type complement of intestinal cells, all of which arise during mid-embryogenesis. This mutant, called rr31, is a fully dominant, maternal-effect, gain-of-function mutation in the cdc-25.1 cell cycle phosphatase that sensitizes the intestinal lineage to an extra cell division. We showed that cdc-25.1 acts at the G1/S transition, as ectopic expression of CDC-25.1 caused entry into S phase in intestinal cells. In addition, we showed that the cdc-25.1(gf) requires cyclin E. The extra cell division defect was shown to be restricted to the E lineage and the E fate is necessary and sufficient to sensitize cells to this mutation.

Development ◽  
2000 ◽  
Vol 127 (23) ◽  
pp. 5071-5082 ◽  
Author(s):  
E.T. Kipreos ◽  
S.P. Gohel ◽  
E.M. Hedgecock

In multicellular eukaryotes, a complex program of developmental signals regulates cell growth and division by controlling the synthesis, activation and degradation of G(1) cell cycle regulators. Here we describe the lin-23 gene of Caenorhabditis elegans, which is required to restrain cell proliferation in response to developmental cues. In lin-23 null mutants, all postembryonic blast cells undergo extra divisions, creating supernumerary cells that can differentiate and function normally. In contrast to the inability to regulate the extent of blast cell division in lin-23 mutants, the timing of initial cell cycle entry of blast cells is not affected. lin-23 encodes an F-box/WD-repeat protein that is orthologous to the Saccharomyces cerevisiae gene MET30, the Drosophila melanogaster gene slmb and the human gene betaTRCP, all of which function as components of SCF ubiquitin-ligase complexes. Loss of function of the Drosophila slmb gene causes the growth of ectopic appendages in a non-cell autonomous manner. In contrast, lin-23 functions cell autonomously to negatively regulate cell cycle progression, thereby allowing cell cycle exit in response to developmental signals.


2021 ◽  
Author(s):  
Robert Sablowski ◽  
Crisanto Gutierrez

Abstract The reiterative organogenesis that drives plant growth relies on the constant production of new cells, which remain encased by interconnected cell walls. For these reasons, plant morphogenesis strictly depends on the rate and orientation of both cell division and cell growth. Important progress has been made in recent years in understanding how cell cycle progression and the orientation of cell divisions are coordinated with cell and organ growth and with the acquisition of specialized cell fates. We review basic concepts and players in plant cell cycle and division, and then focus on their links to growth-related cues, such as metabolic state, cell size, cell geometry, and cell mechanics, and on how cell cycle progression and cell division are linked to specific cell fates. The retinoblastoma pathway has emerged as a major player in the coordination of the cell cycle with both growth and cell identity, while microtubule dynamics are central in the coordination of oriented cell divisions. Future challenges include clarifying feedbacks between growth and cell cycle progression, revealing the molecular basis of cell division orientation in response to mechanical and chemical signals, and probing the links between cell fate changes and chromatin dynamics during the cell cycle.


Genetics ◽  
1992 ◽  
Vol 130 (4) ◽  
pp. 771-790 ◽  
Author(s):  
D G Morton ◽  
J M Roos ◽  
K J Kemphues

Abstract Specification of some cell fates in the early Caenorhabditis elegans embryo is mediated by cytoplasmic localization under control of the maternal genome. Using nine newly isolated mutations, and two existing mutations, we have analyzed the role of the maternally expressed gene par-4 in cytoplasmic localization. We recovered seven new par-4 alleles in screens for maternal effect lethal mutations that result in failure to differentiate intestinal cells. Two additional par-4 mutations were identified in noncomplementation screens using strains with a high frequency of transposon mobility. All 11 mutations cause defects early in development of embryos produced by homozygous mutant mothers. Analysis with a deficiency in the region indicates that it33 is a strong loss-of-function mutation. par-4(it33) terminal stage embryos contain many cells, but show no morphogenesis, and are lacking intestinal cells. Temperature shifts with the it57ts allele suggest that the critical period for both intestinal differentiation and embryo viability begins during oogenesis, about 1.5 hr before fertilization, and ends before the four-cell stage. We propose that the primary function of the par-4 gene is to act as part of a maternally encoded system for cytoplasmic localization in the first cell cycle, with par-4 playing a particularly important role in the determination of intestine. Analysis of a par-4; par-2 double mutant suggests that par-4 and par-2 gene products interact in this system.


1979 ◽  
Vol 81 (1) ◽  
pp. 123-136 ◽  
Author(s):  
N Agabian ◽  
M Evinger ◽  
G Parker

An essential event in developmental processes is the introduction of asymmetry into an otherwise undifferentiated cell population. Cell division in Caulobacter is asymmetric; the progeny cells are structurally different and follow different sequences of development, thus providing a useful model system for the study of differentiation. Because the progeny cells are different from one another, there must be a segregation of morphogenetic and informational components at some time in the cell cycle. We have examined the pattern of specific protein segregation between Caulobacter stalked and swarmer daughter cells, with the rationale that such a progeny analysis would identify both structurally and developmentally important proteins. To complement the study, we have also examined the pattern of protein synthesis during synchronous growth and in various cellular fractions. We show here, for the first time, that the association of proteins with a specific cell type may result not only from their periodicity of synthesis, but also from their pattern of distribution at the time of cell division. Several membrane-associated and soluble proteins are segregated asymmetrically between progeny stalked and swarmer cells. The data further show that a subclass of soluble proteins becomes associated with the membrane of the progeny stalked cells. Therefore, although the principal differentiated cell types possess different synthetic capabilities and characteristic proteins, the asymmetry between progeny stalked and swarmer cells is generated primarily by the preferential association of specific soluble proteins with the membrane of only one daughter cell. The majority of the proteins which exhibit this segregation behavior are synthesized during the entire cell cycle and exhibit relatively long, functional messenger RNA half-lives.


2020 ◽  
Author(s):  
Holly Briggs ◽  
Euan S. Polson ◽  
Bronwyn K. Irving ◽  
Alexandre Zougman ◽  
Ryan K. Mathew ◽  
...  

AbstractOverexpression and mitosis-promoting roles of Transforming acidic coiled-coil containing protein 3 (TACC3) are well-established in many cancers, including glioblastoma (GBM). However, the effector gene networks downstream of TACC3 remain poorly defined, partly due to an incomplete understanding of TACC3 cell lineage specificity and its dynamic role during the cell cycle. Here, we use a patient-derived GBM model to report that TACC3 predominantly resides in the GBM cell cytoplasm, while engaging in gene regulation temporally as defined by the cell cycle state. TACC3 loss-of-function, cell cycle stage-specific transcriptomics, and unsupervised self-organizing feature maps revealed pathways (including Hedgehog signalling) and individual genes (including HOTAIR) that exhibited anticorrelated expression phenotypes across interphase and mitosis. Furthermore, this approach identified a set of 22 TACC3-dependent transcripts in publicly-available clinical databases that predicted poor overall and progression-free survival in 162 GBM and 514 low-grade glioma patient samples. These findings uncover TACC3-dependent genes as a function of TACC3 cell cycle oscillation, which is important for TACC3-targeting strategies, and for predicting poor outcomes in brain cancer patients.


Author(s):  
Emily M. Astarita ◽  
Camden A. Hoover ◽  
Sara M. Maloney ◽  
T. Murlidharan Nair ◽  
Jenifer R. Prosperi

AbstractAdenomatous Polyposis Coli (APC) is lost in approximately 70% of sporadic breast cancers, with an inclination towards triple negative breast cancer (TNBC). TNBC is treated with traditional chemotherapy, such as paclitaxel (PTX); however, tumors often develop drug resistance. We previously created APC knockdown cells (APC shRNA1) using the human TNBC cells, MDA-MB-157, and showed that APC loss induces PTX resistance. To understand the mechanisms behind APC-mediated PTX response, we performed cell cycle analysis and analyzed cell cycle related proteins. Cell cycle analysis indicated increased G2/M population in PTX-treated APC shRNA1 cells compared to PTX-treated controls, suggesting that APC expression does not alter PTX-induced G2/M arrest. We further studied the subcellular localization of the G2/M transition proteins, cyclin B1 and CDK1. The APC shRNA1 cells had increased CDK1, which was preferentially localized to the cytoplasm, and increased CDK6. RNA-sequencing was performed to gain a global understanding of changes downstream of APC loss and identified a broad mis-regulation of cell cycle-related genes in APC shRNA1 cells. Our studies are the first to show an interaction between APC and taxane response in breast cancer. The implications include designing combination therapy to re-sensitize APC-mutant breast cancers to taxanes using the specific cell cycle alterations.


2018 ◽  
Author(s):  
Nicholas L Panchy ◽  
John P. Lloyd ◽  
Shin-Han Shiu

AbstractThe collection all TFs, target genes and their interactions in an organism form a gene regulatory network (GRN), which underly complex patterns of transcription even in unicellular species. However, identifying which interactions regulate expression in a specific temporal context remains a challenging task. With multiple experimental and computational approaches to characterize GRNs, we predicted general and phase-specific cell-cycle expression in Saccharomyces cerevisiae using four regulatory data sets: chromatin immunoprecipitation (ChIP), TF deletion data (Deletion), protein binding microarrays (PBMs), and position weight matrices (PWMs). Our results indicate that the source of regulatory interaction information significantly impacts our ability to predict cell-cycle expression where the best model was constructed by combining selected TF features from ChIP and Deletion data as well as TF-TF interaction features in the form of feed-forward loops. The TFs that were the best predictors of cell-cycle expression were enriched for known cell-cycle regulators but also include regulators not implicated in cell-cycle regulation previously. In addition, ChIP and Deletion datasets led to the identification different subsets of TFs important for predicting cell-cycle expression. Finally, analysis of important TF-TF interaction features suggests that the GRN regulating cell cycle expression is highly interconnected and clustered around four groups of genes, two of which represent known cell-cycle regulatory complexes, while the other two contain TFs that are not known cell-cycle regulators (Ste12-Tex1 and Rap1-Hap1-Msn4), but are nonetheless important to regulating the timing of expression. Thus, not only do our models accurately reflect what is known about the regulation of the S. cerevisiae cell cycle, they can be used to discover regulatory factors which play a role in controlling expression during the cell cycle as well as other contexts with discrete temporal patterns of expression.


2018 ◽  
Author(s):  
Long Chen ◽  
Vincy Wing Sze Ho ◽  
Ming-Kin Wong ◽  
Xiaotai Huang ◽  
Lu-yan Chan ◽  
...  

AbstractIntercellular signaling interaction plays a key role in breaking fate symmetry during animal development. Identification of the signaling interaction at cellular resolution is technically challenging, especially in a developing embryo. Here we develop a platform that allows automated inference and validation of signaling interaction for every cell cycle of C. elegans embryogenesis. This is achieved by generation of a systems-level cell contact map that consists of 1,114 highly confident intercellular contacts by modeling analysis and is validated through cell membrane labeling coupled with cell lineage analysis. We apply the map to identify cell pairs between which a Notch signaling interaction takes place. By generating expression patterns for two ligands and two receptors of Notch signaling pathway with cellular resolution using automated expression profiling technique, we are able to refine existing and identify novel Notch interactions during C. elegans embryogenesis. Targeted cell ablation followed by cell lineage analysis demonstrates the roles of signaling interactions over cell division in breaking fate symmetry. We finally develop a website that allows online access to the cell-cell contact map for mapping of other signaling interaction in the community. The platform can be adapted to establish cellular interaction from any other signaling pathways.


2000 ◽  
Vol 20 (17) ◽  
pp. 6300-6307 ◽  
Author(s):  
Satoru Shintani ◽  
Hiroe Ohyama ◽  
Xue Zhang ◽  
Jim McBride ◽  
Kou Matsuo ◽  
...  

ABSTRACT Regulated cyclin-dependent kinase (CDK) levels and activities are critical for the proper progression of the cell division cycle. p12DOC-1 is a growth suppressor isolated from normal keratinocytes. We report that p12DOC-1 associates with CDK2. More specifically, p12DOC-1 associates with the monomeric nonphosphorylated form of CDK2 (p33CDK2). Ectopic expression of p12DOC-1 resulted in decreased cellular CDK2 and reduced CDK2-associated kinase activities and was accompanied by a shift in the cell cycle positions of p12DOC-1transfectants (↑ G1 and ↓ S). The p12DOC-1-mediated decrease of CDK2 was prevented if the p12DOC-1 transfectants were grown in the presence of the proteosome inhibitor clasto-lactacystin β-lactone, suggesting that p12DOC-1 may target CDK2 for proteolysis. A CDK2 binding mutant was created and was found to revert p12DOC-1-mediated, CDK2-associated cell cycle phenotypes. These data support p12DOC-1 as a specific CDK2-associated protein that negatively regulates CDK2 activities by sequestering the monomeric pool of CDK2 and/or targets CDK2 for proteolysis, reducing the active pool of CDK2.


Development ◽  
1994 ◽  
Vol 120 (3) ◽  
pp. 535-544 ◽  
Author(s):  
S.A. Speicher ◽  
U. Thomas ◽  
U. Hinz ◽  
E. Knust

The Drosophila gene Serrate encodes a transmembrane protein with 14 EGF-like repeats in its extracellular domain. Here we show that loss-of-function mutations in this gene lead to larval lethality. Homozygous mutant larvae fail to differentiate the anterior spiracles, exhibit poorly developed mouth-hooks and show a severe reduction in the size of the wing and haltere primordia, which is not due to cell death. The few homozygous mutant escapers that pupariate develop into pharate adults that almost completely lack wings and halteres. Clonal analysis in the adult epidermis demonstrates a requirement for Serrate during wing and haltere development. Targeted ectopic expression of Serrate in the imaginal discs using the yeast transcriptional activator Gal4 results in regionally restricted induction of cell proliferation, e.g. the ventral tissues in the case of the wings and halteres. The results suggest that the wild-type function of Serrate is required for the control of position-specific cell proliferation during development of meso- and metathoracic dorsal discs, which in turn exerts a direct effect on morphogenesis.


Sign in / Sign up

Export Citation Format

Share Document