scholarly journals Wasp controls oriented migration of endothelial cells to achieve functional vascular patterning

Development ◽  
2021 ◽  
Author(s):  
André Rosa ◽  
Wolfgang Giese ◽  
Katja Meier ◽  
Silvanus Alt ◽  
Alexandra Klaus-Bergmann ◽  
...  

Endothelial cell migration and proliferation are essential for the establishment of a hierarchical organization of blood vessels and optimal distribution of blood. However, how these cellular processes are quantitatively coordinated to drive vascular network morphogenesis remains unknown. Here, using the zebrafish vasculature as a model system, we demonstrate that the balanced distribution of endothelial cells as well as the resulting regularity of vessel caliber, is a result of cell migration from veins towards arteries and cell proliferation in veins. We identify the Wiskott-Aldrich Syndrome protein (WASp) as an important molecular regulator of this process and show that loss of coordinated migration from veins to arteries upon wasb depletion results in aberrant vessel morphology and the formation of persistent arteriovenous shunts. We demonstrate that WASp achieves its function through the coordination of junctional actin assembly and PECAM1 recruitment and provide evidence that this is conserved in human. Overall, we demonstrate that functional vascular patterning in the zebrafish trunk is established through differential cell migration regulated by junctional actin, and that interruption of differential migration may represent a pathomechanism in vascular malformations.

2020 ◽  
Author(s):  
André Rosa ◽  
Wolfgang Giese ◽  
Katja Meier ◽  
Silvanus Alt ◽  
Alexandra Klaus-Bergmann ◽  
...  

AbstractEndothelial cell migration and proliferation are essential for the establishment of a hierarchical organization of blood vessels and optimal distribution of blood. However, how these cellular processes are coordinated remains unknown. Here, using the zebrafish trunk vasculature we show that in future veins endothelial cells proliferate more than in future arteries and migrate preferentially towards neighboring arteries. In future arteries endothelial cells show a biphasic migration profile. During sprouting cells move away from the dorsal aorta, during remodelling cells stop or move towards the feeding aorta. The final morphology of blood vessels is thus established by local proliferation and oriented cell migration to and from neighboring vessels. Additionally, we identify WASp to be essential for this differential migration. Loss of WASp leads to irregular distribution of endothelial cells, substantially enlarged veins and persistent arteriovenous shunting. Mechanistically, we report that WASp drives the assembly of junctional associated actin filaments and is required for junctional expression of PECAM-1. Together, our data identify that functional vascular patterning in the zebrafish trunk utilizes differential cell movement regulated by junctional actin, and that interruption of differential migration may represent a pathomechanism in vascular malformations.


2020 ◽  
Vol 401 (10) ◽  
pp. 1167-1180
Author(s):  
María Eugenia Chamorro ◽  
Romina Maltaneri ◽  
Agustina Schiappacasse ◽  
Alcira Nesse ◽  
Daniela Vittori

AbstractThe proliferation and migration of endothelial cells are vascular events of inflammation, a process which can also potentiate the effects of promigratory factors. With the aim of investigating possible modifications in the activity of erythropoietin (Epo) in an inflammatory environment, we found that Epo at a non-promigratory concentration was capable of stimulating EA.hy926 endothelial cell migration when TNF-α was present. VCAM-1 and ICAM-1 expression, as well as adhesion of monocytic THP-1 cells to endothelial layers were also increased. Structurally modified Epo (carbamylation or N-homocysteinylation) did not exhibit these effects. The sensitizing effect of TNF-α on Epo activity was mediated by the Epo receptor. Inhibition assays targeting the PI3K/mTOR/NF-κB pathway, shared by Epo and TNF-α, show a cross-talk between both cytokines. As observed in assays using antioxidants, cell migration elicited by TNF-α + Epo depended on TNF-α-generated reactive oxygen species (ROS). ROS-mediated inactivation of protein tyrosine phosphatase 1B (PTP1B), involved in Epo signaling termination, could explain the synergistic effect of these cytokines. Our results suggest that ROS generated by inflammation inactivate PTP1B, causing the Epo signal to last longer. This mechanism, along with the cross-talk between both cytokines, could explain the sensitizing action of TNF-α on the migratory effect of Epo.


2002 ◽  
Vol 115 (9) ◽  
pp. 1837-1846 ◽  
Author(s):  
Sandra van Wetering ◽  
Jaap D. van Buul ◽  
Safira Quik ◽  
Frederik P. J. Mul ◽  
Eloise C. Anthony ◽  
...  

The integrity of the endothelium is dependent on cell-cell adhesion, which is mediated by vascular-endothelial (VE)-cadherin. Proper VE-cadherin-mediated homotypic adhesion is, in turn, dependent on the connection between VE-cadherin and the cortical actin cytoskeleton. Rho-like small GTPases are key molecular switches that control cytoskeletal dynamics and cadherin function in epithelial as well as endothelial cells. We show here that a cell-penetrating, constitutively active form of Rac (Tat-RacV12) induces a rapid loss of VE-cadherin-mediated cell-cell adhesion in endothelial cells from primary human umbilical veins (pHUVEC). This effect is accompanied by the formation of actin stress fibers and is dependent on Rho activity. However,transduction of pHUVEC with Tat-RhoV14, which induces pronounced stress fiber and focal adhesion formation, did not result in a redistribution of VE-cadherin or an overall loss of cell-cell adhesion. In line with this observation, endothelial permeability was more efficiently increased by Tat-RacV12 than by Tat-RhoV14. The loss of cell-cell adhesion, which is induced by Tat-RacV12, occurred in parallel to and was dependent upon the intracellular production of reactive oxygen species (ROS). Moreover, Tat-RacV12 induced an increase in tyrosine phosphorylation of a component the VE-cadherin-catenin complex, which was identified as α-catenin. The functional relevance of this signaling pathway was further underscored by the observation that endothelial cell migration, which requires a transient reduction of cell-cell adhesion, was blocked when signaling through ROS was inhibited. In conclusion, Rac-mediated production of ROS represents a previously unrecognized means of regulating VE-cadherin function and may play an important role in the (patho)physiology associated with inflammation and endothelial damage as well as with endothelial cell migration and angiogenesis.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256646
Author(s):  
Harsha Nagar ◽  
Seonhee Kim ◽  
Ikjun Lee ◽  
Su-Jeong Choi ◽  
Shuyu Piao ◽  
...  

Rho GDP-dissociation inhibitor (RhoGDI), a downregulator of Rho family GTPases, prevents nucleotide exchange and membrane association. It is responsible for the activation of Rho GTPases, which regulate a variety of cellular processes, such as migration. Although RhoGDI2 has been identified as a tumor suppressor gene involved in cellular migration and invasion, little is known about its role in vascular endothelial cell (EC) migration. CR6-interacting factor 1 (CRIF1) is a CR6/GADD45-interacting protein with important mitochondrial functions and regulation of cell growth. We examined the expression of RhoGDI2 in CRIF1-deficient human umbilical vein endothelial cells (HUVECs) and its role in cell migration. Expression of RhoGDI2 was found to be considerably higher in CRIF1-deficient HUVECs along with suppression of cell migration. Moreover, the phosphorylation levels of Akt and CREB were decreased in CRIF1-silenced cells. The Akt-CREB signaling pathway was implicated in the changes in endothelial cell migration caused by CRIF1 downregulation. In addition to RhoGDI2, we identified another factor that promotes migration and invasion of ECs. Adrenomedullin2 (ADM2) is an autocrine/paracrine factor that regulates vascular tone and other vascular functions. Endogenous ADM2 levels were elevated in CRIF1-silenced HUVECs with no effect on cell migration. However, siRNA-mediated depletion of RhoGDI2 or exogenous ADM2 administration significantly restored cell migration via the Akt-CREB signaling pathway. In conclusion, RhoGDI2 and ADM2 play important roles in the migration of CRIF1-deficient endothelial cells.


2010 ◽  
Vol 299 (6) ◽  
pp. C1402-C1408 ◽  
Author(s):  
Leeann M. Bellamy ◽  
Adam P. W. Johnston ◽  
Michael De Lisio ◽  
Gianni Parise

The role of angiotensin II (ANG II) in postnatal vasculogenesis and angiogenesis during skeletal muscle (SKM) regeneration is unknown. We examined the capacity of ANG II to stimulate capillary formation and growth during cardiotoxin-induced muscle regeneration in ACE inhibitor-treated ANG II type 1a receptor knockout (AT1a−/−) and C57Bl/6 control mice. Analysis of tibialis anterior (TA) cross-sections revealed 17% and 23% reductions in capillarization in AT1a−/− and captopril treated mice, respectively, when compared with controls, 21 days postinjury. Conversely, no differences in capillarization were detected at early time points (7 and 10 days). These results identify ANG II as a regulator of angiogenesis but not vasculogenesis in vivo. In vitro angiogenesis assays of human umbilical vein endothelial cells (HUVECs) further confirmed ANG II as proangiogeneic as 71% and 124% increases in tube length and branch point number were observed following ANG II treatment. Importantly, treatment of HUVECs with conditioned media from differentiated muscle cells resulted in an 84% and 203% increase in tube length and branch point number compared with controls, which was abolished following pretreatment of the cells with an angiotensin-converting enzyme inhibitor. The pro-angiogenic effect of ANG II can be attributed to an enhanced endothelial cell migration because both transwell and under agarose migration assays revealed a 37% and 101% increase in cell motility, respectively. Collectively, these data highlight ANG II as a proangiogenic regulator during SKM regeneration in vivo and more importantly demonstrates that ANG II released from SKM can signal endothelial cells and regulate angiogenesis through the induction of endothelial cell migration.


2000 ◽  
Vol 113 (1) ◽  
pp. 59-69 ◽  
Author(s):  
M.F. Carlevaro ◽  
S. Cermelli ◽  
R. Cancedda ◽  
F. Descalzi Cancedda

Vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) induces endothelial cell migration and proliferation in culture and is strongly angiogenic in vivo. VEGF synthesis has been shown to occur in both normal and transformed cells. The receptors for the factor have been shown to be localized mainly in endothelial cells, however, the presence of VEGF synthesis and the VEGF receptor in cells other than endothelial cells has been demonstrated. Neoangiogenesis in cartilage growth plate plays a fundamental role in endochondral ossification. We have shown that, in an avian in vitro system for chondrocyte differentiation, VEGF was produced and localized in cell clusters totally resembling in vivo cartilage. The factor was synthesized by hypertrophic chondrocytes and was released into their conditioned medium, which is highly chemotactic for endothelial cells. Antibodies against VEGF inhibited endothelial cell migration induced by chondrocyte conditioned media. Similarly, endothelial cell migration was inhibited also by antibodies directed against the VEGF receptor 2/Flk1 (VEGFR2). In avian and mammalian embryo long bones, immediately before vascular invasion, VEGF was distinctly localized in growth plate hypertrophic chondrocytes. In contrast, VEGF was not observed in quiescent and proliferating chondrocytes earlier in development. VEGF receptor 2 colocalized with the factor both in hypertrophic cartilage in vivo and hypertrophic cartilage engineered in vitro, suggesting an autocrine loop in chondrocytes at the time of their maturation to hypertrophic cells and of cartilage erosion. Regardless of cell exposure to exogenous VEGF, VEGFR-2 phosphorylation was recognized in cultured hypertrophic chondrocytes, supporting the idea of an autocrine functional activation of signal transduction in this non-endothelial cell type as a consequence of the endogenous VEGF production. In summary we propose that VEGF is actively responsible for hypertrophic cartilage neovascularization through a paracrine release by chondrocytes, with invading endothelial cells as a target. Furthermore, VEGF receptor localization and signal transduction in chondrocytes strongly support the hypothesis of a VEGF autocrine activity also in morphogenesis and differentiation of a mesoderm derived cell.


2008 ◽  
Vol 99 (03) ◽  
pp. 576-585 ◽  
Author(s):  
Mathieu Provençal ◽  
Marisol Michaud ◽  
Édith Beaulieu ◽  
David Ratel ◽  
Georges-Étienne Rivard ◽  
...  

SummaryTissue factor pathway inhibitor (TFPI) is a plasma Kunitz-type serine protease inhibitor that is mainly known for its inhibition of tissue factor-mediated coagulation. In addition to its anticoagulant properties, emerging data show that TFPI may also regulate endothelial cell functions via a non-haemostatic pathway. In this work we demonstrate that at concentrations within the physiological range,TFPI inhibits both endothelial cell migration and their differentiation into capillary-like structures in vitro. These effects were specific to endothelial cells since no inhibitory effect was observed on the migration of tumor (glio- blastoma) cells. Inhibition of endothelial cell migration was correlated with a concomitant loss in cell adhesion,suggesting an alteration of focal adhesion complex integrity. Accordingly,we observed thatTFPI inhibited the phosphorylation of focal adhesion kinase and paxillin,two key proteins involved in the scaffolding of these complexes, and that this effect was specific to endothelial cells. These results suggest that TFPI influences the angiogenic process via a non-haemostatic pathway, by downregulating the migratory mechanisms of endothelial cells.


2006 ◽  
Vol 291 (4) ◽  
pp. H1563-H1572 ◽  
Author(s):  
Jian-Xiong Chen ◽  
Heng Zeng ◽  
Mayme L Lawrence ◽  
Timothy S. Blackwell ◽  
Barbara Meyrick

Reactive oxygen species (ROS) play a central role in the pathogenesis of many cardiovascular diseases, such as atherosclerosis and hypertension. Endothelial NADPH oxidase is the major source of intracellular ROS. The present study investigated the role of endothelial NADPH oxidase-derived ROS in angiopoietin-1 (Ang-1)-induced angiogenesis. Exposure of porcine coronary artery endothelial cells (PCAECs) to Ang-1 (250 ng/ml) for periods up to 30 min led to a transient and dose-dependent increase in intracellular ROS. Thirty minutes of pretreatment with the NADPH oxidase inhibitors diphenylene iodinium (DPI, 10 μM) and apocynin (200 μM) suppressed Ang-1-stimulated ROS. Pretreatment with either DPI or apocynin also significantly attenuated Ang-1-induced Akt and p44/42 MAPK phosphorylation. In addition, inhibition of NADPH oxidase significantly suppressed Ang-1-induced endothelial cell migration and sprouting from endothelial spheroids. Using mouse heart microvascular endothelial cells from wild-type (WT) mice and mice deficient in the p47phox component of NADPH oxidase (p47phox−/−), we found that although Ang-1 stimulated intracellular ROS, Akt and p42/44 MAPK phosphorylation, and cell migration in WT cells, the responses were strikingly suppressed in cells from the p47phox−/− mice. Furthermore, exposure of aortic rings from p47phox−/− mice to Ang-1 demonstrated fewer vessel sprouts than WT mice. Inhibition of the Tie-2 receptor inhibited Ang-1-induced endothelial migration and vessel sprouting. Together, our data strongly suggest that endothelial NADPH oxidase-derived ROS play a critical role in Ang-1-induced angiogenesis.


Blood ◽  
2010 ◽  
Vol 115 (20) ◽  
pp. 4130-4137 ◽  
Author(s):  
Jinmin Gao ◽  
Lei Sun ◽  
Lihong Huo ◽  
Min Liu ◽  
Dengwen Li ◽  
...  

Cylindromatosis (CYLD) is a deubiquitinase that was initially identified as a tumor suppressor and has recently been implicated in diverse normal physiologic processes. In this study, we have investigated the involvement of CYLD in angiogenesis, the formation of new blood vessels from preexisting ones. We find that knockdown of CYLD expression significantly impairs angiogenesis in vitro in both matrigel-based tube formation assay and collagen-based 3-dimensional capillary sprouting assay. Disruption of CYLD also remarkably inhibits angiogenic response in vivo, as evidenced by diminished blood vessel growth into the angioreactors implanted in mice. Mechanistic studies show that CYLD regulates angiogenesis by mediating the spreading and migration of vascular endothelial cells. Silencing of CYLD dramatically decreases microtubule dynamics in endothelial cells and inhibits endothelial cell migration by blocking the polarization process. Furthermore, we identify Rac1 activation as an important factor contributing to the action of CYLD in regulating endothelial cell migration and angiogenesis. Our findings thus uncover a previously unrecognized role for CYLD in the angiogenic process and provide a novel mechanism for Rac1 activation during endothelial cell migration and angiogenesis.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3712-3712
Author(s):  
Gerald W. Prager ◽  
Patrick M. Brunner ◽  
Judit Mihaly ◽  
Yuri Koschelnick ◽  
Bernd R. Binder

Abstract uPA plays an important role in angiogenesis: Originally, the urokinase system has been implicated to assist the angiogenic process by it’s proteolytic properties. It is now becoming increasingly evident that uPA additionally elicits many pro-angiogenic responses like differentiation, proliferation and cell migration in a non-proteolytic fashion via induction of intracellular signal transduction. In this study we demonstrate that in endothelial cells uPA protects against apoptosis by transcriptional upregulation of inhibitor of apoptosis proteins (IAPs), among them most prominently the X-linked inhibitor of apoptosis protein (XIAP). In contrast to canonical growth factors, like vascular endothelial growth factor (VEGF), uPA elicits anti-apoptosis independently of the PI3-kinase pathway. uPA-induced cell survival is dependent on the type of extracellular matrix used indicating the involvement of integrin adhesion receptors. Thereby, uPA induces phosphorylation of the CDC42 downstream effector p21-activated kinase 1 (PAK1), which leads to IkappaB kinase alpha (IKKa) phosphorylation, a prerequisite for NFkappaB activation. Blocking NFkappaB by using the specific NFkappaB inhibitor BAY 11–7082 or by adenoviral-mediated overexpression of its inhibitor, IkB, inhibits uPA-induced XIAP expression as well as uPA-induced cell survival. Downregulating XIAP expression by small interfering RNA techniques significantly reduces cell survival efficiencies of uPA in endothelial cells. From these data we conclude that uPA activation, which is a main player in endothelial cell migration and invasion, provides an additional, PI3-kinase independent cell survival mechanism.


Sign in / Sign up

Export Citation Format

Share Document