The role of extracellular matrix in the formation of the sclerotome

Development ◽  
1979 ◽  
Vol 54 (1) ◽  
pp. 75-98
Author(s):  
Michael Solursh ◽  
Marilyn Fisher ◽  
Stephen Meier ◽  
Carl T. Singley

The development of the sclerotome is considered as a model for the formation of mesenchyme from an epithelium. In early epithelial somites, transmission and scanning electron microscopy indicate considerable ultrastructural similarity between the future sclerotome and dermamyotomal regions. Subsequently, these two regions diverge in their development. In the forming dermamyotome, junctional complexes become more extensive and the cells become elongated, closely applied to each other, and have angular surface contours. In the forming sclerotome, there is an early reduction in apical junctions. The cells elongate, keeping their original polarity, and acquire numerous filopodia which contain punctate junctions at sites of cell-to-cell contact. Associated with cellular extension is an expansion of the intercellular spaces which do not contain any ultrastructurally recognizable material. Evidence for a role of hyaluronic acid in the expansion of the intercellular spaces is presented. As identified by the susceptibility of cetylpyridinium chloride precipitates to Streptomyces hyaluronidase and chromatographic separation of chondroitinase ABC digestion products, as much as 64–68% of the [3H]glucosamine-labeled glycosaminoglycans synthesized by explanted somites is hyaluronic acid. In addition, hyaluronidase-sensitive label is localized in the intercellular spaces of the sclerotome, as demonstrated by autoradiography. When ,Streptomyces hyaluronidase is injected in ovo into living embryos, the sclerotomal mesenchyme differentiates morphologically, but intercellular spaces are drastically reduced. It is hypothesized that the sclerotomal cells produce a hyaluronate-enriched extracellular matrix which is inflated by hydration to mediate the expansion of the sclerotomal mass towards the notochord.

Development ◽  
1977 ◽  
Vol 42 (1) ◽  
pp. 195-207
Author(s):  
Marilyn Fisher ◽  
Michael Solursh

Comparison of sections stained with Alcian blue at pH 1·0 or 2·5 demonstrates the distribution of sulfated and non-sulfated glycosaminoglycans in the extracellular matrix of the stage-8 (Hamburger & Hamilton, 1951) chick embryo. Both types of GAG are present in basement membranes throughout the embryo. Treatment of sections with Streptomyces hyaluronidase, reported to be specific for hyaluronic acid, prior to staining with Alcian blue at pH 2·5 reveals that hyaluronate is an important constituent of the extracellular matrix in basement membranes and in intercellular spaces within the mesoderm. Hyaluronate is shown to be the predominant glycosaminoglycan in the matrix of the head mesenchyme. In addition, examination by SEM and light microscopy of embryos after treatment in ovo with hyaluronidase shows that removal of hyaluronate from living embryos results in a dramatic decrease in cell-free spaces and a weakening of the association between mesoderm and ectoderm in the head.


1991 ◽  
Vol 69 (9) ◽  
pp. 2044-2054 ◽  
Author(s):  
Rajendra Chaubal ◽  
V. A. Wilmot ◽  
Willard K. Wynn

Adherence of germinating urediniospores of the common maize rust fungus (Puccinia sorghi Schw.) to substrata was studied by ultrastructural and cytochemical examination of extracellular matrix produced by germ tubes in conjunction with measurements of adhesion to plastic and glass surfaces. Copious amounts of extracellular matrix on germ tubes could consistently be visualized by scanning and transmission electron microscopy only when (i) a cationic detergent (cetylpyridinium chloride, polydiallyldimethylammonium chloride) or a cationic stain (ruthenium red, alcian blue, cuprolinic blue) was added to the fixation solutions, (ii) germ tubes were fixed by rapid-freezing and freeze-substitution and observed with a scanning electron microscope, or when (iii) germ tubes were observed in a frozen-hydrated state by low-temperature scanning electron microscopy. Incubation of germinated spores with dilute alkalies (NaOH, KOH), pronase E (nonspecific protease), and laminarinase (β-1,3 (1,3; 1,4-glucanase) removed the extracellular matrix and detached germ tubes from surfaces. Treatments with water, dilute acids, ionic and neutral detergents, organic solvents, hydrocarbons, and several polysaccharide-degrading enzymes did not remove the extracellular matrix and also did not detach germ tubes. These results, together with staining patterns obtained with lectins and other polysaccharide-specific reagents, indicate that the extracellular matrix is composed mainly of glycoproteins rich in acidic amino acids and β-1,3-glucan polymers, and that it is probably responsible for the adhesion of the rust germ tubes to the host leaf surfaces. Key words: Puccinia sorghi, germ tube adhesion, extracellular matrix, cytochemistry.


2019 ◽  
Author(s):  
Sara Pedron ◽  
Gabrielle L. Wolter ◽  
Jee-Wei E. Chen ◽  
Sarah E. Laken ◽  
Jann N. Sarkaria ◽  
...  

AbstractTherapeutic options to treat primary glioblastoma (GBM) tumors are scarce. GBM tumors with epidermal growth factor receptor (EGFR) mutations, in particular a constitutively active EGFRvIII mutant, have extremely poor clinical outcomes. GBM tumors with concurrent EGFR amplification and active phosphatase and tensin homolog (PTEN) are sensitive to the tyrosine kinase inhibitor erlotinib, but the effect is not durable. A persistent challenge to improved treatment is the poorly understood role of cellular, metabolic, and biophysical signals from the GBM tumor microenvironment on therapeutic efficacy and acquired resistance. The intractable nature of studying GBM cell in vivo motivates tissue engineering approaches to replicate aspects of the complex GBM tumor microenvironment. Here, we profile the effect of erlotinib on two patient-derived GBM specimens: EGFR+ GBM12 and EGFRvIII GBM6. We use a three-dimensional gelatin hydrogel to present brain-mimetic hyaluronic acid (HA) and evaluate the coordinated influence of extracellular matrix signals and EGFR mutation status on GBM cell migration, survival and proliferation, as well as signaling pathway activation in response to cyclic erlotinib exposure. Comparable to results observed in vivo for xenograft tumors, erlotinib exposure is not cytotoxic for GBM6 EGFRvIII specimens. We also identify a role of extracellular HA (via CD44) in altering the effect of erlotinib in GBM EGFR+ cells by modifying STAT3 phosphorylation status. Taken together, we report an in vitro tissue engineered platform to monitor signaling associated with poor response to targeted inhibitors in GBM.


Development ◽  
1983 ◽  
Vol 73 (1) ◽  
pp. 1-15
Author(s):  
Gary C. Schoenwolf ◽  
Marilyn Fisher

Chick embryos at stages 8 to 9 were treated in ovo with Streptomyces hyaluronidase (SH) to determine whether neurulation occurs normally in embryos depleted of hyaluronic acid, a major component of the extracellular matrix. Open neural tube defects occurred in 60–94 % (depending on the particular enzyme batch) of the embryos treated with SH and examined after an additional 24 h of incubation. Defects were confined mainly to the spinal cord. The neural folds underwent elevation in defective regions but failed to converge and fuse across the dorsal midline. The extracellular matrix of embryos treated with SH was depleted consistently, as determined with sections stained with Alcian blue. Control experiments were done to ensure that neural tube defects were not caused by non-specific protease contamination of SH, or by digestion products of hyaluronic acid. We propose several plausible and testable mechanisms through which the extracellular matrix might influence the complex developmental process of neurulation.


2019 ◽  
Vol 244 (15) ◽  
pp. 1303-1312 ◽  
Author(s):  
Beata Machnicka ◽  
Renata Grochowalska ◽  
Dżamila M Bogusławska ◽  
Aleksander F Sikorski

Spectrins are proteins that are responsible for many aspects of cell function and adaptation to changing environments. Primarily the spectrin-based membrane skeleton maintains cell membrane integrity and its mechanical properties, together with the cytoskeletal network a support cell shape. The occurrence of a variety of spectrin isoforms in diverse cellular environments indicates that it is a multifunctional protein involved in numerous physiological pathways. Participation of spectrin in cell–cell and cell–extracellular matrix adhesion and formation of dynamic plasma membrane protrusions and associated signaling events is a subject of interest for researchers in the fields of cell biology and molecular medicine. In this mini-review, we focus on data concerning the role of spectrins in cell surface activities such as adhesion, cell–cell contact, and invadosome formation. We discuss data on different adhesion proteins that directly or indirectly interact with spectrin repeats. New findings support the involvement of spectrin in cell adhesion and spreading, formation of lamellipodia, and also the participation in morphogenetic processes, such as eye development, oogenesis, and angiogenesis. Here, we review the role of spectrin in cell adhesion and cell–cell contact.Impact statementThis article reviews properties of spectrins as a group of proteins involved in cell surface activities such as, adhesion and cell–cell contact, and their contribution to morphogenesis. We show a new area of research and discuss the involvement of spectrin in regulation of cell–cell contact leading to immunological synapse formation and in shaping synapse architecture during myoblast fusion. Data indicate involvement of spectrins in adhesion and cell–cell or cell–extracellular matrix interactions and therefore in signaling pathways. There is evidence of spectrin’s contribution to the processes of morphogenesis which are connected to its interactions with adhesion molecules, membrane proteins (and perhaps lipids), and actin. Our aim was to highlight the essential role of spectrin in cell–cell contact and cell adhesion.


2008 ◽  
Vol 4 (3) ◽  
pp. 249-257 ◽  
Author(s):  
Renato Frischknecht ◽  
Constanze I. Seidenbecher

Many neurons and their synapses are enwrapped in a brain-specific form of the extracellular matrix (ECM), the so-called perineuronal net (PNN). It forms late in the postnatal development around the time when synaptic contacts are stabilized. It is made of glycoproteins and proteoglycans of glial as well as neuronal origin. The major organizing polysaccharide of brain extracellular space is the polymeric carbohydrate hyaluronic acid (HA). It forms the backbone of a meshwork consisting of CNS proteoglycans such as the lectican family of chondroitin sulphate proteoglycans (CSPG). This family comprises four abundant components of brain ECM: aggrecan and versican as broadly expressed CSPGs and neurocan and brevican as nervous-system-specific family members. In this review, we intend to focus on the specific role of the HA-based ECM in synapse development and function.


2020 ◽  
Vol 20 ◽  
Author(s):  
Maryam Shahi ◽  
Daruosh Mohammadnejad ◽  
Mohammad Karimipour ◽  
Seyed Hossein Rasta ◽  
Reza Rahbarghazi ◽  
...  

: Stroke is known as one of very important public health problems which are related to a societal burden and tremendous economic. It has been showed, there are few therapeutic approaches in the treatment of this disease. In this regard, present therapeutic platforms aim to obtain neuroprotection, reperfusion, and neurorecovery. Among these therapies, regenerative medicine-based therapies have been appeared as new ways in stroke therapy. Hyaluronic acid (HA) is a new candidate which could be applied as regerenative medicine-based therapy in the treatment of stroke. HA is a glycosaminoglycan which is formed of repeating disaccharide units (D-glucuronic acid and N-acetyl-D-glucosamine). Multiple lines evidence demonstrated that HA has critical roles in normal tissues. It can be key players in different physiological and pathophysiological conditions such as water homeostasis, multiple drug resistance, inflammatory processes, tumorigenesis, angiogenesis, and changed viscoelasticity of extracellular matrix. HA has very important physicochemical properties (i.e., availability of reactive functional groups and its solubility which makes it as a biocompatible material for applying in the regenerative medicine. Given that HA-based bioscaffolds and biomaterials do not induce inflammation or allergies and are hydrophilic which have introduced them as soft tissue fillers and injectable dermal. Several studies indicated that HA could be employed as new therapeutic candidate in the treatment of stroke. These studies documented that HA and HA-based therapies exert their pharmacology effects via affecting on stroke-related processes. Herein, we have summarized the role of extracellular matrix in stroke pathogenesis. Moreover, we highlighted the HA-based therapies in the treatment of stroke.


1983 ◽  
Vol 245 (6) ◽  
pp. G816-G823 ◽  
Author(s):  
R. W. Freel ◽  
M. Hatch ◽  
D. L. Earnest ◽  
A. M. Goldner

The effects of a dihydroxy bile salt, taurochenodeoxycholate (TCDC), on the permeability and conductance of isolated, short-circuited segments of the rabbit descending colon were examined using conventional Ussing chamber techniques. Increasing concentrations of TCDC (1℃4 mM) produced dose-dependent increases in sodium backflux (JNas leads to m) and tissue conductance (Gt) when applied to either the mucosal or serosal salines. However, mucosal addition was twice as potent in increasing JNas leads to m and Gt at 4 mM. Tracer experiments indicated that the transepithelial serosal-to-mucosal fluxes of sodium and mannitol are via an aqueous, unrestricted, free-solution pathway, while albumin movements are restricted through this pathway both in the absence and presence of mucosal TCDC. The changes in JNas leads to m, JMans leads to m, and Gt caused by 4 mM mucosal TCDC were largely reversed by rinsing the mucosal chamber with fresh buffer. It was also observed that osmotically induced volume flows in the serosal-to-mucosal direction could offset or reverse the changes in Gt produced by 2 mM mucosal TCDC, suggesting that the enhanced conductance pathway is in series with the lateral intercellular spaces. Taken together, these results suggest that low concentrations of TCDC alter the integrity of tight-junctional complexes between the epithelial cells of the rabbit colon.


Sign in / Sign up

Export Citation Format

Share Document