An autoradiographic analysis of tissue potency in different regions of the embryonic ectoderm during gastrulation in the mouse

Development ◽  
1982 ◽  
Vol 69 (1) ◽  
pp. 265-285
Author(s):  
R. S. P. Beddington

In vitro chimaeras have been produced by injecting [3H]thymidine-labelled 8th day embryonic ectoderm, derived from the anterior, distal or posterior regions of the egg cylinder,into unlabelled synchronous embryos. Injected embryos were cultured for 36 h and the distribution of donor cells was analysed autoradiographically. One series of orthotopic injections was carried out and the results indicate that the developmental fate of embryonic ectoderm in the posterior part of the embryo is to form mesoderm, both embryonic and extraembryonic. Heterotopic injections of distal and posterior embryonic ectoderm demonstrate that these tissues readily conform to the colonisation patterns characteristic of their new location. In contrast, anterior embryonic ectoderm showed some preference for definitive ectoderm differentiation following heterotopic transplantation. However, there was no evidence that the normal fate of tissue from the three regions studied could be explained by pre-existing mosaicism in the embryonic ectoderm.

Development ◽  
1981 ◽  
Vol 64 (1) ◽  
pp. 87-104
Author(s):  
R. S. P. Beddington

The potency of 8th day mouse embryonic ectoderm cells has been studied by injecting them into synchronous embryos which were subsequently cultured for 36 h. The development of injected embryos in vitro was comparable to that of embryos maintained in vivo. Tritiated thymidine was used to label the donor cells so that chimaerism could be analysed histologically. The results demonstrate the pluripotency of embryonic ectoderm in situ in the late primitive-streak-stage embryo. In addition, the patterns of donor cell colonization vary according to the site of origin and injection of the donor tissue.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3395
Author(s):  
Ting Bei ◽  
Xusong Cao ◽  
Yun Liu ◽  
Jinmei Li ◽  
Haihua Luo ◽  
...  

Total body irradiation is a standard procedure of bone marrow transplantation (BMT) which causes a rapid increase in reactive oxygen species (ROS) in the bone marrow microenvironment during BMT. The increase in ROS reduces the engraftment ability of donor cells, thereby affecting the bone marrow recovery of recipients after BMT. In the early weeks following transplantation, recipients are at high risk of severe infection due to weakened hematopoiesis. Thus, it is imperative to improve engraftment capacity and accelerate bone marrow recovery in BMT recipients. In this study, we constructed recombinant copper/zinc superoxide dismutase 1 (SOD1) fused with the cell-penetrating peptide (CPP), the trans-activator of transcription (Tat), and showed that this fusion protein has penetrating ability and antioxidant activity in both RAW264.7 cells and bone marrow cells in vitro. Furthermore, irradiated mice transplanted with SOD1-Tat-treated total bone marrow donor cells showed an increase in total bone marrow engraftment capacity two weeks after transplantation. This study explored an innovative method for enhancing engraftment efficiency and highlights the potential of CPP-SOD1 in ROS manipulation during BMT.


1989 ◽  
Vol 169 (3) ◽  
pp. 779-794 ◽  
Author(s):  
S X Qin ◽  
S Cobbold ◽  
R Benjamin ◽  
H Waldmann

Transplantation tolerance across histoincompatibilities in multiple non-H-2 minors (B10.BR into CBA/Ca) and "minor" plus H-2D (B10.A into CBA/Ca) antigens has been achieved successfully by combined adult bone marrow transplantation and treatment with CD4 and CD8 mAbs. The tolerant state was confirmed by permanent acceptance of donor strain skin grafts, and in vitro unresponsiveness to donor cells. Tolerance was associated with partial donor chimerism to various degrees. Tolerance to minor transplantation antigens induced in this manner was restricted to recipient-type MHC. The possibility was raised that tolerance resulted, at least in part, from clonal anergy rather than deletion.


Development ◽  
1993 ◽  
Vol 119 (1) ◽  
pp. 263-276 ◽  
Author(s):  
K.S. Vogel ◽  
A.M. Davies

The placode-derived cranial sensory neurons of the vestibular and nodose ganglia in avian embryos exhibit differences in neurite growth rate and the duration of neurotrophin-independent survival in vitro that arise prior to gangliogenesis and target contact (Davies, A. M. (1989) Nature 337, 553–555; Vogel, K. S. and Davies, A. M. (1991) Neuron 7, 819–830). To ascertain the state of commitment of presumptive placodal ectoderm to differentiate into neurons of the vestibular or nodose type, we performed heterotopic transplantation of labelled presumptive placodal ectoderm at E1.5 in the chicken embryo. We then assayed transplant-derived neurons for hindbrain innervation patterns, neurite growth and survival at E3.5. We show that presumptive placodal ectoderm is not determined to give rise to neurons of the vestibular or nodose phenotype at E1.5. Explantation of presumptive placodal ectoderm at E1.5 showed that this ectoderm is also not specified to differentiate into neurons at this stage. In addition, we demonstrate that non-neurogenic ectoderm from the trunk can give rise to nodose-type neurons when transplanted heterotopically to the nodose region.


1936 ◽  
Vol 13 (2) ◽  
pp. 219-236
Author(s):  
C. H. WADDINGTON ◽  
A. COHEN

1. Experiments were made on the development of the head of chicken embryos cultivated in vitro. 2. Defects in the presumptive head region of primitive streak embryos are regulated completely if the wound fills up before the histogenesis of neural tissue begins in the head-process stage. Different methods by which the hole is filled are described. 3. No repair occurs in the head-process and head-fold stages, and in this period two masses of neural tissue cannot heal together. 4. Median defects, even if repaired as regards neural tissue, cause a failure of the ventral closure of the foregut. The lateral evaginations of the gut develop typically in atypical situations. The headfold may break through and join up with the endoderm in such a way that the gut acquires an anterior opening. 5. The paired heart rudiments may develop separately. The separate vesicles begin to contract at a time appropriate to the development of the embryo as a whole. The two hearts are mirror images, the left one having the normal curvature, but the embryos do not survive long enough for the hearts to acquire a very definite shape. 6. The forebrain has a considerable capacity for repair in the early somite stages (five to twenty-five somites). One-half of the forebrain can remodel itself into a complete forebrain. In some cases the neural plate and epidermis grow together over the wound, in others the epidermis and mesenchyme make the first covering, leaving a space along the inside of which the neural tissue grows. The neural tissue may become a very thin sheet. 7. The repaired forebrain may induce the formation of a nasal placode from the non-presumptive nasal epidermis which covers the wound. 8. If the optic vesicle is entirely removed, a new one is not formed, but parts of the vesicle can regulate to complete eye-cups, either when still attached to the forebrain or after being isolated in the extra-embryonic regions of another embryo. 9. Injured optic vesicles induce lenses from the non-presumptive epidermis which grows over the wound. Transplanted optic neural tissue from embryos of about five somites induces the formation of lentoids from extra-embryonic ectoderm, but only in a small proportion of cases. 10. The presumptive lens epidermis can produce a slight thickening even when contact with the optic cup is prevented. 11. The significance of periods of minimum regulatory power for the concept of determination is discussed. 12. The data concerning lens formation are discussed in terms of the field concept.


Blood ◽  
1997 ◽  
Vol 90 (2) ◽  
pp. 865-872 ◽  
Author(s):  
Ellen L.W. Kittler ◽  
Stefan O. Peters ◽  
Rowena B. Crittenden ◽  
Michelle E. Debatis ◽  
Hayley S. Ramshaw ◽  
...  

Using a murine bone marrow transplantation model, we evaluated the long-term engraftment of retrovirally transduced bone marrow cells in nonmyeloablated hosts. Male bone marrow was stimulated in a cocktail of interleukin-3 (IL-3), IL-6, IL-11, and stem cell factor (SCF ) for 48 hours, then cocultured on the retroviral producer line MDR18.1 for an additional 24 hours. Functional transduction of hematopoietic progenitors was detected in vitro by reverse transcriptase-polymerase chain reaction (RT-PCR) amplification of multiple drug resistance 1 (MDR1) mRNA from high proliferative potential-colony forming cell (HPP-CFC) colonies. After retroviral transduction, male bone marrow cells were injected into nonablated female mice. Transplant recipients received three TAXOL (Bristol-Myers, Princeton, NJ) injections (10 mg/kg) over a 14-month period. Transplant recipient tissues were analyzed by Southern blot and fluorescence in situ hybridization for Y-chromosome–specific sequences and showed donor cell engraftment of approximately 9%. However, polymerase chain reaction amplification of DNAs from bone marrow, spleen, and peripheral blood showed no evidence of the transduced MDR1 gene. RT-PCR analysis of total bone marrow RNA showed that transcripts from the MDR1 gene were present in a fraction of the engrafted donor cells. These data show functional transfer of the MDR1 gene into nonmyeloablated murine hosts. However, the high rates of in vitro transduction into HPP-CFC, coupled with the low in vivo engraftment rate of donor cells containing the MDR1 gene, suggest that the majority of stem cells that incorporated the retroviral construct did not stably engraft in the host. Based on additional studies that indicate that ex vivo culture of bone marrow induces an engraftment defect concomitantly with progression of cells through S phase, we propose that the cell cycle transit required for proviral integration reduces or impairs the ability of transduced cells to stably engraft.


Development ◽  
1978 ◽  
Vol 45 (1) ◽  
pp. 93-105
Author(s):  
Brigid Hogan ◽  
Rita Tilly

This paper describes the in vitro development of inner cell masses isolated immunosurgically from mouse blastocysts which had been collected on 3·5 days p.c. and then incubated for 24 h. The inner cell masses continue to grow in culture and develop through a series of stages with increasing complexity of internal organization. By day 1 all of the cultured ICMs have an outer layer of endoderm, and by day 3 some of them have two distinct kinds of inside cells; a columnar epithelial layer and a thin hemisphere of elongated cells. Later, mesodermal cells appear to delaminate from a limited region of the columnar layer, close to where it forms a junction with the thinner cells. By day 5, about 25% of the cultured ICMs have a striking resemblance to normal 7·5-day p.c. C3H embryos, with embryonic ectoderm, extra-embryonic ectoderm and chorion, embryonic and extra-embryonic mesoderm, and visceral endoderm. When mechanically disrupted and grown as attached clumps of cells in a tissue dish, these embryo-like structures give rise to trophoblast-like giant cells. These results suggest that the inner cell mass of 4·5-day p.c. blastocysts contains cells which can give rise to trophoblast derivates in culture.


Development ◽  
2001 ◽  
Vol 128 (4) ◽  
pp. 481-490
Author(s):  
T. Yoshimizu ◽  
M. Obinata ◽  
Y. Matsui

Primordial germ cells (PGCs) in mice have been recognized histologically as alkaline phosphatase (AP) activity-positive cells at 7.2 days post coitum (dpc) in the extra-embryonic mesoderm. However, mechanisms regulating PGC formation are unknown, and an appropriate in vitro system to study the mechanisms has not been established. Therefore, we have developed a primary culture of explanted embryos at pre- and early-streak stages, and have studied roles of cell and/or tissue interactions in PGC formation. The emergence of PGCs from 5.5 dpc epiblasts was observed only when they were co-cultured with extra-embryonic ectoderm, which may induce the conditions required for PGC formation within epiblasts. From 6.0 dpc onwards, PGCs emerged from whole epiblasts as did a fragment of proximal epiblast that corresponds to the area containing presumptive PGC precursors without neighboring extra-embryonic ectoderm and visceral endoderm. Dissociated epiblasts at these stages, however, did not give rise to PGCs, indicating that interactions among a cluster of a specific number of proximal epiblast cells is needed for PGC differentiation. In contrast, we observed that dissociated epiblast cells from a 6.5-b (6.5+15-16 hours) to 6.75 dpc embryo that had undergone gastrulation gave rise to PGCs. Our results demonstrate that stage-dependent tissue and cell interactions play key roles in PGC determination.


Blood ◽  
1999 ◽  
Vol 94 (10) ◽  
pp. 3432-3438 ◽  
Author(s):  
Manuela Battaglia ◽  
Marco Andreani ◽  
Marisa Manna ◽  
Sonia Nesci ◽  
Paola Tonucci ◽  
...  

Bone marrow transplantation (BMT) from an HLA-identical donor is an established therapy to cure homozygous β-thalassemia. Approximately 10% of thalassemic patients developed a persistent mixed chimerism (PMC) after BMT characterized by stable coexistence of host and donor cells in all hematopoietic compartments. Interestingly, in the erythrocytic lineage, close to normal levels of hemoglobin can be observed in the absence of complete donor engraftment. In the lymphocytic lineage, the striking feature is the coexistence of immune cells. This implies a state of tolerance or anergy, raising the issue of immunocompetence of the host. To understand the state of the T cells in PMC, repertoire analysis and functional studies were performed on cells from 3 ex-thalassemics. Repertoire analysis showed a profound skewing. This was due to an expansion of some T cells and not to a collapse of the repertoire, because phytohemagglutinin stimulation showed the presence of a complex repertoire. The immunocompetence of the chimeric immune systems was further established by showing responses to alloantigens and recall antigens in vitro. Both host and donor lymphocytes were observed in the cultures. These data suggest that the expanded T cells play a role in specific tolerance while allowing a normal immune status in these patients.


2020 ◽  
Vol 21 (17) ◽  
pp. 5951
Author(s):  
Laura Patras ◽  
Marcel H. A. M. Fens ◽  
Pieter Vader ◽  
Arjan Barendrecht ◽  
Alina Sesarman ◽  
...  

Extracellular vesicles (EV) secreted in the tumour microenvironment (TME) are emerging as major antagonists of anticancer therapies by orchestrating the therapeutic outcome through altering the behaviour of recipient cells. Recent evidence suggested that chemotherapeutic drugs could be responsible for the EV-mediated tumour–stroma crosstalk associated with cancer cell drug resistance. Here, we investigated the capacity of tumour EV (TEV) secreted by normoxic and hypoxic (1% oxygen) C26 cancer cells after doxorubicin (DOX) treatment to alter the response of naïve C26 cells and RAW 264.7 macrophages to DOX. We observed that C26 cells were less responsive to DOX treatment under normoxia compared to hypoxia, and a minimally cytotoxic DOX concentration that mounted distinct effects on cell viability was selected for TEV harvesting. Homotypic and heterotypic pretreatment of naïve hypoxic cancer and macrophage-like cells with normoxic DOX-elicited TEV rendered these cells slightly less responsive to DOX treatment. The observed effects were associated with strong hypoxia-inducible factor 1-alpha (HIF-1α) induction and B-cell lymphoma–extra-large anti-apoptotic protein (Bcl-xL)-mediated anti-apoptotic response in normoxic DOX-treated TEV donor cells, being also tightly connected to the DOX-TEV-mediated HIF-1α induction, as well as Bcl-xL levels increasing in recipient cells. Altogether, our results could open new perspectives for investigating the role of chemotherapy-elicited TEV in the colorectal cancer TME and their modulatory actions on promoting drug resistance.


Sign in / Sign up

Export Citation Format

Share Document