scholarly journals The developmental origins of Notch-driven intrahepatic bile duct disorders

2021 ◽  
Vol 14 (9) ◽  
Author(s):  
Anabel Martinez Lyons ◽  
Luke Boulter

ABSTRACT The Notch signaling pathway is an evolutionarily conserved mechanism of cell–cell communication that mediates cellular proliferation, cell fate specification, and maintenance of stem and progenitor cell populations. In the vertebrate liver, an absence of Notch signaling results in failure to form bile ducts, a complex tubular network that radiates throughout the liver, which, in healthy individuals, transports bile from the liver into the bowel. Loss of a functional biliary network through congenital malformations during development results in cholestasis and necessitates liver transplantation. Here, we examine to what extent Notch signaling is necessary throughout embryonic life to initiate the proliferation and specification of biliary cells and concentrate on the animal and human models that have been used to define how perturbations in this signaling pathway result in developmental liver disorders.

2006 ◽  
Vol 26 (13) ◽  
pp. 4769-4774 ◽  
Author(s):  
Céline Souilhol ◽  
Sarah Cormier ◽  
Kenji Tanigaki ◽  
Charles Babinet ◽  
Michel Cohen-Tannoudji

ABSTRACT The Notch signaling pathway is an evolutionarily conserved signaling system which has been shown to be essential in cell fate specification and in numerous aspects of embryonic development in all metazoans thus far studied. We recently demonstrated that several components of the Notch signaling pathway, including the four Notch receptors and their five ligands known in mammals, are expressed in mouse oocytes, in mouse preimplantation embryos, or both. This suggested a possible implication of the Notch pathway in the first cell fate specification of the dividing mouse embryo, which results in the formation of the blastocyst. To address this issue directly, we generated zygotes in which both the maternal and the zygotic expression of Rbpsuh, a key element of the core Notch signaling pathway, were abrogated. We find that such zygotes give rise to blastocysts which implant and develop normally. Nevertheless, after gastrulation, these embryos die around midgestation, similarly to Rbpsuh-null mutants. This demonstrates that the RBP-Jκ-dependent pathway, otherwise called the canonical Notch pathway, is dispensable for blastocyst morphogenesis and the establishment of the three germ layers, ectoderm, endoderm, and mesoderm. These results are discussed in the light of recent observations which have challenged this conclusion.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaoyu Li ◽  
Harald von Boehmer

The Notch signaling pathway is an evolutionarily conserved cell signaling system present in most multicellular organisms, as it controls cell fate specification by regulating cell proliferation, differentiation, apoptosis, and survival. Regulation of the Notch signaling pathway can be achieved at multiple levels. Notch proteins are involved in lineage fate decisions in a variety of tissues in various species. Notch is essential for T lineage cell differentiation including T versus B and αβ versus γδ lineage specification. In this paper, we discuss Notch signaling in normal T-cell maturation and differentiation as well as in T-cell acute lymphoblastic lymphoma/leukemia.


2015 ◽  
Vol 21 (1) ◽  
Author(s):  
Daniel Mauricio Meza Lasso ◽  
Cindy Johana Peña Barrera ◽  
Francy Yomara Bayona Rodriguez ◽  
Belfran Alcides Carbonell Medina ◽  
Clementina Infante

<p class="p1"><strong>RESUMEN</strong></p><p class="p2">La vía de señalización Notch se caracteriza por mediar la comunicación célula-célula, regulando diferentes procesos celulares como proliferación, apoptosis y definición del destino celular. Esta vía ha sido implicada en el desarrollo de estructuras craneofaciales como paladar, diente y bóveda craneal. El objetivo de esta investigación fue identificar los patrones de expresión de los genes componentes de la vía Notch, Serrate1 y Notch1, durante el desarrollo del tercio medio facial. Se utilizaron embriones de pollo (Gallus gallus) seleccionados de acuerdo a los criterios de Hamilton y Hamburger y sobre los cuales se realizó hibridación in situ con ribosondas marcadas con Digoxigenina (DIG), para luego ser detectadas con anticuerpos Anti-Dig. Los resultados mostraron expresión de los genes evaluados, en las prominencias maxilares (pmx) y frontonasal (pfn) durante el desarrollo del tercio medio facial. Estos resultados sugieren una probable participación de la vía Notch a través de estos genes, en los diferentes procesos celulares que determinan la morfogénesis y el desarrollo del tercio medio facial.</p><p class="p2"><strong>ABSTRACT</strong></p><p class="p2">The Notch signaling pathway is characterized by mediate cell-cell communication, regulating different cellular processes as proliferation, apoptosis and cell fate definition. This pathway has been implicated in craniofacial structures development as palate, teeth and cranial vault. The objective of this research was to identify the genes expression patterns of some Notch signaling pathway components, Serrate1 and Notch1, during the midface development. It was used chicken embryos (Gallus gallus) selected according to Hamilton and Hamburger criteria. We performed in situ hybridization with Digoxigenin (DIG)-labeled riboprobes and detected with the antibody Anti-Dig. The results showed the expression of the evaluated genes in the maxillary (pmx) and frontonasal (pfn) prominences during the midface development. These results suggest a probable involvement of the Notch pathway through these genes in different cellular processes that determine midface morphogenesis and development.</p><p class="p2"> </p>


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10334
Author(s):  
Dimitrios Vlachakis ◽  
Louis Papageorgiou ◽  
Ariadne Papadaki ◽  
Maria Georga ◽  
Sofia Kossida ◽  
...  

Notch family proteins play a key role in a variety of developmental processes by controlling cell fate decisions and operating in a great number of biological processes in several organ systems, such as hematopoiesis, somatogenesis, vasculogenesis, neurogenesis and homeostasis. The Notch signaling pathway is crucial for the majority of developmental programs and regulates multiple pathogenic processes. Notch family receptors’ activation has been largely related to its multiple effects in sustaining oncogenesis. The Notch signaling pathway constitutes an ancient and conserved mechanism for cell to cell communication. Much of what is known about Notch family proteins function comes from studies done in Caenorhabditis Elegans and Drosophila Melanogaster. Although, human Notch homologs had also been identified, the molecular mechanisms which modulate the Notch signaling pathway remained substantially unknown. In this study, an updated evolutionary analysis of the Notch family members among 603 different organisms of all kingdoms, from bacteria to humans, was performed in order to discover key regions that have been conserved throughout evolution and play a major role in the Notch signaling pathway. The major goal of this study is the presentation of a novel updated phylogenetic tree for the Notch family as a reliable phylogeny “map”, in order to correlate information of the closely related members and identify new possible pharmacological targets that can be used in pathogenic cases, including cancer.


Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1879 ◽  
Author(s):  
Christian T. Meisel ◽  
Cristina Porcheri ◽  
Thimios A. Mitsiadis

The Notch signaling pathway regulates cell proliferation, cytodifferentiation and cell fate decisions in both embryonic and adult life. Several aspects of stem cell maintenance are dependent from the functionality and fine tuning of the Notch pathway. In cancer, Notch is specifically involved in preserving self-renewal and amplification of cancer stem cells, supporting the formation, spread and recurrence of the tumor. As the function of Notch signaling is context dependent, we here provide an overview of its activity in a variety of tumors, focusing mostly on its role in the maintenance of the undifferentiated subset of cancer cells. Finally, we analyze the potential of molecules of the Notch pathway as diagnostic and therapeutic tools against the various cancers.


2021 ◽  
Vol 28 ◽  
Author(s):  
Amir Valizadeh ◽  
Ali Sayadmanesh ◽  
Zatollah Asemi ◽  
Forough Alemi ◽  
Ata Mahmoodpoor ◽  
...  

: The liver is one of the significant regenerative organs in the body. Nevertheless, underlying molecular mechanisms regulating liver repair and regeneration following resection or damage remain largely unknown. The Notch signaling pathway is a profoundly evolutionarily well‐conserved cell signaling system that plays mostly in multicellular organisms' development. Malfunctions in this pathway lead to the progression of several liver disorders, including hepatoblastoma (HB), cholangiocarcinoma (CCA), hepatocellular carcinoma (HCC), and so on. Notch pathway plays a fundamental role in cell fate during the embryonic stage's progression to the adult stage in liver tissue. Modulation of Notch signaling may be used in the vast array of patients who succumb to cirrhosis owing to chronic hepatitis by virus infection. This review describes the underlying mechanisms of the Notch signaling pathway in liver development and regeneration briefly and discusses how this pathway leads to better liver disorders in the clinic.


2005 ◽  
Vol 25 (8) ◽  
pp. 2899-2909 ◽  
Author(s):  
Haiyan Tang ◽  
Santiago B. Rompani ◽  
Joshua B. Atkins ◽  
Yan Zhou ◽  
Thomas Osterwalder ◽  
...  

ABSTRACT Numb proteins are evolutionarily conserved signaling molecules that make the daughter cells different after asymmetric divisions by segregating to only one daughter. They contain distinct binding motifs for α-adaptin (α-Ada) and proteins with Eps15 homology (EH) domains, which regulate endocytosis, and for E3 ubiquitin ligases, which target proteins for proteasome-mediated degradation. In Drosophila melanogaster, Numb acts by inhibiting Notch activity to cause a bias in Notch-mediated cell-cell communication. These findings have led to the hypothesis that Numb modulates Notch signaling by using endocytosis and proteasomes to directly reduce Notch protein levels at the cell surface. Here we show that two Drosophila EH proteins, Eps15 homologue 1 (EH1) and the dynamin-associated 160-kDa protein (Dap160), negatively regulate Notch signaling. However, neither elimination of the binding motifs for endocytic proteins nor simultaneous reduction of proteasome activity affects the activity of Numb proteins. Our findings indicate that an endocytosis- and proteasome-independent pathway may mediate Numb signaling in asymmetric cell fate specification.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Jingxia Xu ◽  
Thomas Gridley

The Notch signaling pathway is an evolutionarily conserved intercellular signaling mechanism that is required for embryonic development, cell fate specification, and stem cell maintenance. Discovered and studied initially in Drosophila melanogaster, the Notch pathway is conserved and functionally active throughout the animal kingdom. In this paper, we summarize the biochemical mechanisms of Notch signaling and describe its role in regulating one particular developmental pathway, oogenesis in Drosophila.


2018 ◽  
Vol 90 (12) ◽  
pp. 112-121
Author(s):  
K V Dergilev ◽  
E S Zubkova ◽  
I B Beloglazova ◽  
M Yu Menshikov ◽  
E V Parfyonova

Notch signaling pathway is a universal regulator of cell fate in embryogenesis and in maintaining the cell homeostasis of adult tissue. Through local cell-cell interactions, he controls neighboring cells behavior and determines their capacity for self-renewal, growth, survival, differentiation, and apoptosis. Recent studies have shown that the control of regenerative processes in the heart is also carried out with the participation of Notch system. At the heart of Notch regulates migration bone marrow progenitors and stimulates the proliferation of cardiomyocytes, cardiac progenitor cell activity, limits cardiomyocyte hypertrophy and fibrosis progression and stimulates angiogenesis. Notch signaling pathway may be regarded as a very promising target for the development of drugs for the stimulation of regeneration in the myocardium.


2005 ◽  
Vol 25 (21) ◽  
pp. 9503-9508 ◽  
Author(s):  
Shaolin Shi ◽  
Mark Stahl ◽  
Linchao Lu ◽  
Pamela Stanley

ABSTRACT The canonical Notch signaling pathway mediated by Delta- and Jagged-like Notch ligands determines a variety of cell fates in metazoa. In Caenorhabditis elegans and sea urchins, canonical Notch signaling is essential for different cell fate specifications during early embryogenesis or the formation of endoderm, mesoderm, or ectoderm germ layers. Transcripts of Notch signaling pathway genes are present during mouse blastogenesis, suggesting that the canonical Notch signaling pathway may also function in early mammalian development. To test this directly, we used conditional deletion in oocytes carrying a ZP3Cre recombinase transgene to generate mouse embryos lacking both maternal and zygotic protein O-fucosyltransferase 1, a cell-autonomous and essential component of canonical Notch receptor signaling. Homozygous mutant embryos derived from eggs lacking Pofut1 gene transcripts developed indistinguishably from the wild type until approximately embryonic day 8.0, a postgastrulation stage after the formation of the three germ layers. Thus, in contrast to the case with C. elegans and sea urchins, canonical Notch signaling is not required in mammals for earliest cell fate specifications or for formation of the three germ layers. The use of canonical Notch signaling for early cell fate specifications by lower organisms may represent co-option of a regulatory pathway originally used later in development by all metazoa.


Sign in / Sign up

Export Citation Format

Share Document