Mapping the distribution of Golgi enzymes involved in the construction of complex oligosaccharides

1995 ◽  
Vol 108 (4) ◽  
pp. 1617-1627 ◽  
Author(s):  
C. Rabouille ◽  
N. Hui ◽  
F. Hunte ◽  
R. Kieckbusch ◽  
E.G. Berger ◽  
...  

The distribution of beta 1,2 N-acetylglucosaminyltransferase I (NAGT I), alpha 1,3-1,6 mannosidase II (Mann II), beta 1,4 galactosyltransferase (GalT), alpha 2,6 sialyltransferase (SialylT) was determined by immuno-labelling of cryo-sections from HeLa cell lines. Antibody labelling in the HeLa cell line was made possible by stable expression of epitope-tagged forms of these proteins or forms from species to which specific antibodies were available. NAGT I and Mann II had the same distribution occupying the medial and trans cisternae of the stack. GalT and SialylT also had the same distribution but they occupied the trans cisterna and the trans-Golgi network (TGN). These results generalise our earlier observations on the overlapping distribution of Golgi enzymes and show that each of the trans compartments of the Golgi apparatus in HeLa cells contains unique mixtures of those Golgi enzymes involved in the construction of complex, N-linked oligosaccharides.

1993 ◽  
Vol 120 (1) ◽  
pp. 5-13 ◽  
Author(s):  
T Nilsson ◽  
M Pypaert ◽  
M H Hoe ◽  
P Slusarewicz ◽  
E G Berger ◽  
...  

Thin, frozen sections of a HeLa cell line were double labeled with specific antibodies to localize the trans-Golgi enzyme, beta 1,4 galactosyltransferase (GalT) and the medial enzyme, N-acetylglucosaminyltransferase I (NAGT I). The latter was detected by generating a HeLa cell line stably expressing a myc-tagged version of the endogenous protein. GalT was found in the trans-cisterna and trans-Golgi network but, contrary to expectation, NAGT I was found both in the medial- and trans-cisternae, overlapping the distribution of GalT. About one third of the NAGT I and half of the GalT were found in the shared, trans-cisterna. These data show that the differences between cisternae are determined not by different sets of enzymes but by different mixtures.


2014 ◽  
Vol 9 (12) ◽  
pp. 1934578X1400901
Author(s):  
Uppuluri V. Mallavadhani ◽  
Banita Pattnaik ◽  
Nitasha Suri ◽  
Ajit K. Saxena

Ursolic acid (1), a natural pentacyclic triterpenic acid, afforded a variety of ring-C transformed products (5–11) when treated with N-bromosuccinimide under the influence of a range of protective groups and solvents. The synthesized compounds have been evaluated for cytotoxic activity against prostate PC 3, leukemia THP 1, cervical Hela and lung A-549 cancer cell lines. Among the tested analogs, compounds 5, 8, 9 and 10 showed potent activity against PC 3, THP 1 and Hela cell lines. Especially, compound 10 showed enhanced activity against the Hela cell line than the parent compound. Compounds 5, 8 and 9 showed comparable activities against PC 3 and THP 1 cell lines.


2021 ◽  
Author(s):  
saranya J ◽  
BS Sre ◽  
M Arivanandan ◽  
K Bhuvaneswari ◽  
S Sherin ◽  
...  

Abstract Using the ultrasonic approach, we produced a morphology involving cerium oxide/ Zinc oxide/graphene oxide (CeO2/ZnO/GO) nanocomposite-based system. The developed nanocomposite was examined using X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FESEM). The average crystallite size was found to be 11.44 nm, as determined by XRD. FTIR analysis was used to confirm the existence of functional groups. FESEM was used to verify the morphological properties of CeO2/ZnO/GO. The micromorphology of CeO2/ZnO/GO nanocomposite reveals a smoother sheet-like structure. In addition, using an antiproliferative assay test, the developed nanosystem was evaluated for its scavenging anti-cancer capability against HeLa cell lines at various doses and incubation intervals. In our investigation, the effective IC50 concentration was reported to be 62.5 µg/ml at 72 h. Further, the developed nanosystem was evaluated for its killing efficacy against normal cell line. To identify apoptosis-associated alterations of cell membranes throughout the apoptosis process, a dual acridine orange/ethidium bromide (AO/EB) fluorescent staining was done using CeO2/ZnO/GO nanocomposite at three specific concentrations. The quantitative analysis was carried out using flow cytometry (FACS study) to determine the cell cycle during which the greatest number of HeLa cells were destroyed. According to the results of the FACS investigation, maximum cell cycle has taken place in P2, P4.As a result, the newly designed CeO2/ZnO/GO hybrid has demonstrated improved anti-cancer efficacy against the HeLa cell line, making it a better therapeutic agent for cervical cancer detection.


Background: Cancer is still one of the most serious problems that affect human health. Despite the intense efforts to develop treatments, effective agents are still not available. In some cases, conventional therapy could be harmful or fail because of emerging drug resistance. Therefore, the development of novel therapies against cancer is of utmost importance. Assessment of anticancer effects of bacterial metabolites on cancer cells may help in the process of finding new cheap, reliable, contentious and safe cancer therapy. Objective: To determine the anticancer effect of the extracellular metabolites of eight bacterial species on HeLa cell line. Methodology: Extracellular metabolites were prepared by isolating and culturing eight bacterial species (Escherichia coli, Staphylococcus aureus, Micrococcus, Pseudomonas aeruginosa, Lactic acid bacteria, Klebsiella, Proteus and E. coli with its phage) in liquid media. Tubes were incubated overnight and centrifuged. Supernatant was filtered and concentrated using Infra-Red concentrator. Different concentrations were prepared and their anticancer effect were evaluated using MTT cell proliferation assay. Results: Results showed variation among the eight bacteria concerning proliferation inhibition against HeLa cells in a time and concentration dependent manner. Pseudomonas and E. coli with its phage revealed considerable anticancer activity with 63% and 86% inhibitory effects (both at 1000 µg\ml) and IC50 of 301 and 1395 µg/dl at 24h respectively. While Proteus and Micrococcus showed low inhibitory effects and S. aureus enhanced the proliferation of HeLa cells at low concentrations. Conclusion: Among the tested bacteria, Pseudomonas and E. coli and its phage gave the best anticancer inhibitory effects against HeLa cells. Further studies using purified components of effective bacteria are recommended.


2020 ◽  
Vol 9 ◽  
pp. 1581
Author(s):  
Samad Amani ◽  
Alireza Mehdizadeh ◽  
Mohammad Mehdi Movahedi ◽  
Marzieh Keshavarz ◽  
Fereshteh Koosha

Background: Cervical cancer cells are known as radioresistant cells. Current treatment methods have not improved the patients’ survival efficiently; thus, new therapeutic strategies are needed to enhance the efficacy of radiotherapy. Gold nanomaterials with different shapes and sizes have been explored as radiosensitizers. The present study compared the radiosensitizing effects of gold nanorods (AuNRs) with spherical gold nanoparticles (AuNPs) on the HeLa cell line irradiated with megavoltage X-rays. Materials and Methods: The cytotoxicity of AuNRs and AuNPs on HeLa cells in the presence and absence of 6-MV X-ray was investigated using the MTT assay. For this aim, HeLa cells were incubated with and AuNPs and AuNRs at various concentrations (5, 10, and 15 µg/mL) for 6 hours. Afterward, HeLa cells were irradiated with 6-MV X-ray at a single dose of 2 Gy. Results: The results showed that the addition of AuNRs and AuNPs could enhance the radiosensitivity of HeLa cells. Both AuNRs and AuNPs showed low toxicity on HeLa cells, while AuNRs were more toxic than AuNPs at the examined concentrations. Moreover, it was found that AuNRs could enhance the radiosensitivity of HeLa cells more than spherical-shaped AuNPs. Conclusion: This study revealed that the shape of nanoparticles is an effective factor when they are used as radiosensitizing agents during radiotherapy. [GMJ.2020;9:e1581]


2019 ◽  
Vol 44 (1-2) ◽  
pp. 42-49
Author(s):  
Tiantian Guo ◽  
Yiming Song ◽  
Yinghui Lu ◽  
Guolin Li ◽  
Tian Liu ◽  
...  

The first synthesis of a natural triterpenoid saponin bearing N-acetylglucosamine, albidoside A, which is isolated from the roots of Acacia albida, is concisely achieved in a convergent strategy. Preliminary pharmacological research shows anticancer activity against HL-60, MCF-7, MDA-MB-231, Hep-2, and Hela cell lines. In particular, it exhibited good selectivity, which is five times more cytotoxic toward Hep-2 cells (IC50 = 8.91 μM) than the Hela cell line.


2019 ◽  
Vol 35 (3) ◽  
pp. 080-1085 ◽  
Author(s):  
Weerachai Phutdhawong ◽  
Siwaporn Inpang ◽  
Thongchai Taechowisan ◽  
Waya S. Phutdhawong

Methyl-5-(hydroxymethyl)-2-furan carboxylate and derivatives were prepared from furfuryl alcohol and their biological activities were studied for cytotoxicity against cancer cell lines HeLa, HepG2 and Vero, and Gram (+) and Gram (-) bacteria. The amine derivative, (5-(((2-(1H-indol-3-yl)ethyl)amino)methyl) furan-2-yl)methyl acetate, was found to have the most potent biological activity with IC50 62.37 µg/mL against the HeLa cell line and MIC 250 µg/mL against the photogenic bacteria.


2019 ◽  
Vol 23 (07n08) ◽  
pp. 908-915 ◽  
Author(s):  
Fatma Yurt ◽  
Kasim Ocakoglu ◽  
Ozge Er ◽  
Hale Melis Soylu ◽  
Mine Ince ◽  
...  

This study, subphthalocyanines (SubPc) and SubPc integrated TiO2 nanoparticles (SubPc-TiO[Formula: see text] were synthesized as novel photosensitizers. Their PDT effects were evaluated. Furthermore, nuclear imaging potential of [Formula: see text]I-labelled SubPc/SubPc-TiO2 were examined in mouse mammary carcinoma (EMT6) and cervix adenocarcinoma (HeLa) cell lines. The uptake results show that SubPc labelled with [Formula: see text]I radionuclide ([Formula: see text]I-SubPc) in EMT6 and HeLa cell lines was found to be approximately the same as in the WI38 cell line. However, the uptake values of SubPc-TiO2 labelled with [Formula: see text]I ([Formula: see text]I-SubPc-TiO[Formula: see text] in EMT6 and HeLa cell lines were determined to be two times higher than in the WI38 cell line. In other words, the target/non-target tissue ratio was identified as two in the EMT6 and HeLa cell lines. [Formula: see text]I-SubPc-TiO2 is promising for imaging or treatment of breast and cervix tumors. In vitro photodynamic therapy studies have shown that SubPc and SubPc-TiO2 are suitable agents for PDT. In addition, SubPc-TiO2 has higher phototoxicity than SubPc. As a future study, in vivo experiments will be held and performed in tumor-bearing nude mice.


2021 ◽  
Vol 22 (21) ◽  
pp. 11997
Author(s):  
Diana. K. Latypova ◽  
Stanislav V. Shmakov ◽  
Sofya A. Pechkovskaya ◽  
Alexander S. Filatov ◽  
Alexander V. Stepakov ◽  
...  

A series of heterocyclic compounds containing a spiro-fused pyrrolo[3,4-a]pyrrolizine and tryptanthrin framework have been synthesized and studied as potential antitumor agents. Cytotoxicity of products was screened against human erythroleukemia (K562) and human cervical carcinoma (HeLa) cell lines. Among the screened compounds. 4a, 4b and 5a were active against human erythroleukemia (K562) cell line, while 4a and 5a were active against cervical carcinoma (HeLa) cell line. In agreement with the DNA cytometry studies, the tested compounds have achieved significant cell-cycle perturbation with higher accumulation of cells in G2/M phase and induced apoptosis. Using confocal microscopy, we found that with 4a and 5a treatment of HeLa cells, actin filaments disappeared, and granular actin was distributed diffusely in the cytoplasm in 76–91% of cells. We discovered that HeLa cells after treatment with compounds 4a and 5a significantly reduced the number of cells with filopodium-like membrane protrusions (from 63 % in control cells to 29% after treatment) and a decrease in cell motility.


2021 ◽  
Vol 15 (3) ◽  
pp. 157-164
Author(s):  
Mahsa Daneshmand ◽  
◽  
Jamileh Salar Amoli ◽  
Tahereh Ali Esfahani ◽  
◽  
...  

Background: Cotton seed is one of the main sources of protein in animal feeds, containing gossypol, which has been shown to have toxic effects. Results reported by various studies also indicate the anti-cancer effects of gossypol on various cell types. However, its toxic effects on human and animal cells have not been fully established. This study was planned to investigate, for the first time, the cytotoxic effects and oxidative stress induced by gossypol on normal Bovine Kidney (BK) and HeLa cell lines, representing typical healthy and cancer cells, respectively. Methods: The BK and HeLa cell lines were treated for 24, 48 or 72 hours with 5, 10 or 20 ppm of gossypol (+/-). The cellular bio-availability and cytotoxicity were measured by MTT assay. The catalase and Malondialdehyde (MDA) levels were also measured to represent the oxidative stress parameters. Results: The percentages of cytotoxicity in BK and HeLa cell lines were calculated at a gossypol concentration of 5, 10 and 20 ppm over 24, 48 or 72 hours of incubation, respectively. The Lethal Concentration 50 (lC50) values were also determined for the two cell lines. No changes in the catalase and lipid peroxidase activities were observed in either cell line. Conclusion: The percentage of the gossypol cytotoxicity was concentration-dependent. By comparing the IC50 in both cell lines using one-way Analysis of Variance (ANOVA) analysis, a significant difference was observed, suggesting that Hela cells were less sensitive to gossypol than the BK cells. Lack of changes in the oxidative stress, as tested by catalase and MDA assays, demonstrated that gossypol did not induce oxidative stress in either cell line.


Sign in / Sign up

Export Citation Format

Share Document