Glycosaminoglycans modulate cell-matrix interactions of human fibroblasts and endothelial cells in vitro

1996 ◽  
Vol 109 (2) ◽  
pp. 479-488
Author(s):  
T. Schaefer ◽  
M. Roux ◽  
H.W. Stuhlsatz ◽  
R. Herken ◽  
B. Coulomb ◽  
...  

Contact of various cells with extracellular matrix molecules modulates their cellular functions and phenotype. Most investigations have employed dishes coated with purified matrix constituents or plain collagen I lattices omitting the effects of other important matrix components such as proteoglycans. In this study we analyze the effect of purified glycosaminoglycans (GAGs) on human fibroblasts and human umbilical vein endothelial cells (HUVEC) embedded within collagen I/III lattices. HUVEC contracted collagen I/III gels far less efficiently than fibroblasts and addition of heparan sulfate and heparin almost completely inhibited contraction. In collagen gels HUVEC down-regulated collagenase mRNA while increasing collagen I, IV mRNA expression. Addition of heparin and heparan sulfate reversed the collagen IV mRNA induction whereas hyaluronic acid and chondroitin sulfate enhanced fibronectin and collagenase transcripts. Fibroblasts readily contracted collagen gels, and mRNA levels for fibronectin, collagenase and interleukin-6 were stimulated. Gel contraction was mostly unaffected by the different glycosaminoglycans. Fibroblasts responded to the addition of dermatan sulfate, heparan sulfate and heparin with a decrease in fibronectin, collagenase and interleukin-6 mRNA. Binding studies revealed saturable binding sites on fibroblasts and HUVEC for 35S-labelled heparin, demonstrating specificity for heparin and heparan sulfate over other GAGs in competition experiments. This study implies that glycosaminoglycans participate in cell-matrix interactions by effectively modulating the cellular phenotype via high affinity binding sites.

2000 ◽  
Vol 113 (2) ◽  
pp. 247-257 ◽  
Author(s):  
B. Gao ◽  
T.M. Curtis ◽  
F.A. Blumenstock ◽  
F.L. Minnear ◽  
T.M. Saba

Tumor necrosis factor (alpha) (TNF-(alpha) can change the interaction of lung endothelial cell monolayers with their extracellular matrix in association with an increase in endothelial monolayer protein permeability. Using immunofluorescence microscopy and flow cytometry, we determined if exposure of calf pulmonary artery endothelial monolayers to TNF-(alpha) may influence cell-matrix interactions by altering the clustering as well as internalization of the (α)5(beta)1 integrins (or fibronectin receptors) on the surface of endothelial cells. Immunofluorescence microscopy revealed that TNF-(alpha) caused an increase in the intracellular staining of (alpha)5(alpha)1 integrins within structures similar to endocytic vesicles as well as an increase in antibody-induced clustering of the integrins at the cell periphery. Flow cytometric analysis of endothelial cells incubated at 37 degrees C after antibody-labeling of their surface (alpha)5(beta)1 integrins at 4 degrees C confirmed an increase in the rate of (alpha)5(beta)1 integrin internalization which was at least 3 times greater after TNF-(α) exposure, based on the half-life for antibody-labeled surface integrins to reach equilibrium with non-labeled integrins within the intracellular pool. Interestingly, the total cell surface expression of (alpha)5(beta)1 integrins was relatively constant after TNF-(alpha) exposure despite the enhanced rate of internalization, suggesting an accelerated recycling of the internalized (alpha)5(beta)1 integrins back to the cell surface. This response was confirmed by the measurement of labeled integrin recycling, which showed a significant (P<0.01) increase in the rate of recycling of the internalized integrins in TNF-treated endothelial cells. Enhanced internalization and subsequent recycling of (alpha)5(beta)1 integrins by endothelial monolayers exposed to TNF-(alpha) may facilitate the redistribution of cell-surface integrins in response to this inflammatory cytokine and may also modify cell-matrix interactions leading to reduced integrity and increased protein permeability of the lung endothelial monolayers.


2004 ◽  
Vol 24 (7) ◽  
pp. 720-727 ◽  
Author(s):  
Sun-Ryung Lee ◽  
Eng H. Lo

Matrix metalloproteinases (MMPs) may contribute to the pathophysiology of cerebral ischemia by degrading matrix components in the neurovascular unit. In this study, the authors document a pathway by which MMPs interfere with cell—matrix interactions and trigger caspase-mediated cytotoxicity in brain endothelial cells. Hypoxia—reoxygenation induced endothelial cytotoxicity. Cytoprotection with zDEVD-fmk confirmed that cell death was partly caspase mediated. The temporal profile of caspase-3 activation was matched by elevations in MMP-2 and MMP-9. MMP inhibitors significantly decreased caspase-3 activation and reduced endothelial cell death. Degradation of matrix fibronectin confirmed the presence of extracellular proteolysis. Increasing integrin-linked kinase signaling with the β1 integrin-activating antibody (8A2) ameliorated endothelial cytotoxicity. The results suggest that MMP-9 and MMP-2 contribute to caspase-mediated brain endothelial cell death after hypoxia—reoxygenation by disrupting cell—matrix interactions and homeostatic integrin signaling.


2015 ◽  
Vol 12 (102) ◽  
pp. 20141074 ◽  
Author(s):  
Hamid Mohammadi ◽  
Pamma D. Arora ◽  
Craig A. Simmons ◽  
Paul A. Janmey ◽  
Christopher A. McCulloch

The mechanical properties of extracellular matrix proteins strongly influence cell-induced tension in the matrix, which in turn influences cell function. Despite progress on the impact of elastic behaviour of matrix proteins on cell–matrix interactions, little is known about the influence of inelastic behaviour, especially at the large and slow deformations that characterize cell-induced matrix remodelling. We found that collagen matrices exhibit deformation rate-dependent behaviour, which leads to a transition from pronounced elastic behaviour at fast deformations to substantially inelastic behaviour at slow deformations (1 μm min −1 , similar to cell-mediated deformation). With slow deformations, the inelastic behaviour of floating gels was sensitive to collagen concentration, whereas attached gels exhibited similar inelastic behaviour independent of collagen concentration. The presence of an underlying rigid support had a similar effect on cell–matrix interactions: cell-induced deformation and remodelling were similar on 1 or 3 mg ml −1 attached collagen gels while deformations were two- to fourfold smaller in floating gels of high compared with low collagen concentration. In cross-linked collagen matrices, which did not exhibit inelastic behaviour, cells did not respond to the presence of the underlying rigid foundation. These data indicate that at the slow rates of collagen compaction generated by fibroblasts, the inelastic responses of collagen gels, which are influenced by collagen concentration and the presence of an underlying rigid foundation, are important determinants of cell–matrix interactions and mechanosensation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jifeng Liu ◽  
Hongyan Long ◽  
Dagmar Zeuschner ◽  
Andreas F. B. Räder ◽  
William J. Polacheck ◽  
...  

AbstractA major deficit in tissue engineering strategies is the lack of materials that promote angiogenesis, wherein endothelial cells from the host vasculature invade the implanted matrix to form new blood vessels. To determine the material properties that regulate angiogenesis, we have developed a microfluidic in vitro model in which chemokine-guided endothelial cell sprouting into a tunable hydrogel is followed by the formation of perfusable lumens. We show that long, perfusable tubes only develop if hydrogel adhesiveness and degradability are fine-tuned to support the initial collective invasion of endothelial cells and, at the same time, allow for matrix remodeling to permit the opening of lumens. These studies provide a better understanding of how cell-matrix interactions regulate angiogenesis and, therefore, constitute an important step towards optimal design criteria for tissue-engineered materials that require vascularization.


2021 ◽  
Vol 47 (03) ◽  
pp. 295-307 ◽  
Author(s):  
Antonio Junior Lepedda ◽  
Gabriele Nieddu ◽  
Zoi Piperigkou ◽  
Konstantina Kyriakopoulou ◽  
Nikolaos Karamanos ◽  
...  

AbstractCell-surface heparan sulfate proteoglycans (HSPGs) play key roles in regulating cell behavior, cell signaling, and cell matrix interactions in both physiological and pathological conditions. Their soluble forms from glycocalyx shedding are not merely waste products, but, rather, bioactive molecules, detectable in serum, which may be useful as diagnostic and prognostic markers. In addition, as in the case of glypican-3 in hepatocellular carcinoma, they may be specifically expressed by pathological tissue, representing promising targets for immunotherapy. The primary goal of this comprehensive review is to critically survey the main findings of the clinical data from the last 20 years and provide readers with an overall picture of the diagnostic and prognostic value of circulating HSPGs. Moreover, issues related to the involvement of HSPGs in various pathologies, including cardiovascular disease, thrombosis, diabetes and obesity, kidney disease, cancer, trauma, sepsis, but also multiple sclerosis, preeclampsia, pathologies requiring surgery, pulmonary disease, and others will be discussed.


2010 ◽  
Vol 299 (6) ◽  
pp. C1468-C1484 ◽  
Author(s):  
SunYoung Park ◽  
Terri A. DiMaio ◽  
Elizabeth A. Scheef ◽  
Christine M. Sorenson ◽  
Nader Sheibani

Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) is a member of the immunoglobulin superfamily of cell adhesion molecules with important roles in angiogenesis and inflammation. However, the molecular and cellular mechanisms, and the role that specific PECAM-1 isoforms play in these processes, remain elusive. We recently showed attenuation of retinal vascular development and neovascularization in PECAM-1-deficient (PECAM-1−/−) mice. To gain further insight into the role of PECAM-1 in these processes, we isolated primary retinal endothelial cells (EC) from wild-type (PECAM-1+/+) and PECAM-1−/− mice. Lack of PECAM-1 had a significant impact on endothelial cell-cell and cell-matrix interactions, resulting in attenuation of cell migration and capillary morphogenesis. Mechanistically these changes were associated with a significant decrease in expression of endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) bioavailability in PECAM-1−/− retinal EC. PECAM-1−/− retinal EC also exhibited a lower rate of apoptosis under basal and challenged conditions, consistent with their increased growth rate. Furthermore, reexpression of PECAM-1 was sufficient to restore migration and capillary morphogenesis of null cells in an isoform-specific manner. Thus PECAM-1 expression modulates proangiogenic properties of EC, and these activities are significantly influenced by alternative splicing of its cytoplasmic domain.


2016 ◽  
Vol 310 (10) ◽  
pp. F1123-F1135 ◽  
Author(s):  
Terrel Sugar ◽  
Deborah J. Wassenhove-McCarthy ◽  
A. Wayne Orr ◽  
Jonette Green ◽  
Toin H. van Kuppevelt ◽  
...  

Previous research has shown that podocytes unable to assemble heparan sulfate on cell surface proteoglycan core proteins have compromised cell-matrix interactions. This report further explores the role of N-sulfation of intact heparan chains in podocyte-matrix interactions. For the purposes of this study, a murine model in which the enzyme N-deacetylase/ N-sulfotransferase 1 (NDST1) was specifically deleted in podocytes and immortalized podocyte cell lines lacking NDST1 were developed and used to explore the effects of such a mutation on podocyte behavior in vitro. NDST1 is a bifunctional enzyme, ultimately responsible for N-sulfation of heparan glycosaminoglycans produced by cells. Immunostaining of glomeruli from mice whose podocytes were null for Ndst1 ( Ndst1−/−) showed a disrupted pattern of localization for the cell surface proteoglycan, syndecan-4, and for α-actinin-4 compared with controls. The pattern of immunostaining for synaptopodin and nephrin did not show as significant alterations. In vitro studies showed that Ndst1−/− podocytes attached, spread, and migrated less efficiently than Ndst1+/+ podocytes. Immunostaining in vitro for several markers for molecules involved in cell-matrix interactions showed that Ndst1−/− cells had decreased clustering of syndecan-4 and decreased recruitment of protein kinase-Cα, α-actinin-4, vinculin, and phospho-focal adhesion kinase to focal adhesions. Total intracellular phospho-focal adhesion kinase was decreased in Ndst1−/− compared with Ndst1+/+ cells. A significant decrease in the abundance of activated integrin α5β1 on the cell surface of Ndst1−/− cells compared with Ndst1+/+ cells was observed. These results serve to highlight the critical role of heparan sulfate N-sulfation in facilitating normal podocyte-matrix interactions.


Sign in / Sign up

Export Citation Format

Share Document