Formation of crystalloid endoplasmic reticulum in COS cells upon overexpression of microsomal aldehyde dehydrogenase by cDNA transfection

1996 ◽  
Vol 109 (7) ◽  
pp. 1727-1738 ◽  
Author(s):  
A. Yamamoto ◽  
R. Masaki ◽  
Y. Tashiro

When rat liver microsomal aldehyde dehydrogenase (msALDH) was overexpressed in COS-1 cells by cDNA transfection, large granular structures containing both msALDH and endogenous protein disulfide isomerase appeared (Masaki et al. (1994) J. Cell Biol. 126, 1407–1420). Confocal laser microscopy revealed that these granular structures are dispersed throughout the cytoplasm. Electron microscopy showed that the structures are composed of regularly arranged crystalloid smooth endoplasmic reticulum (ER). The formation of the crystalloid ER was accompanied by a remarkable proliferation of smooth ER, which appeared occasionally continuous to the rough ER. We suggest that the smooth ER, proliferated from the rough ER, is transformed and assembled into the crystalloid ER by head-to-head association of the msALDH molecules on the apposed smooth ER membranes. In order to understand the molecular mechanism of the crystalloid ER formation, we asked which portions of the msALDH molecules are needed for the crystalloid ER formation by expressing deletion mutants or chimera protein of msALDH in COS-1 cells. The overexpression of msALDH molecules lacking the stem region preceding the membrane spanning region, although they were exclusively localized in the ER, did not induce the formation of crystalloid ER. More detailed analysis showed that the amino acid sequence FFLL, located in the stem region, is necessary to form the crystalloid ER. The chimera protein containing the last 35 amino acids of msALDH at the carboxyl terminus of chloramphenicol acetyltransferase was localized to the ER, but did not induce the formation of the crystalloid ER. These results suggest that at least two regions, the bulky amino-terminal region and the FFLL sequence in the stem region of msALDH molecules are required for the formation of the crystalloid ER.

Author(s):  
John J. Wolosewick ◽  
John H. D. Bryan

Early in spermiogenesis the manchette is rapidly assembled in a distal direction from the nuclear-ring-densities. The association of vesicles of smooth endoplasmic reticulum (SER) and the manchette microtubules (MTS) has been reported. In the mouse, osmophilic densities at the distal ends of the manchette are the organizing centers (MTOCS), and are associated with the SER. Rapid MT assembly and the lack of rough ER suggests that there is an existing pool of MT protein. Colcemid potentiates the reaction of vinblastine with tubulin and was used in this investigation to detect this protein.


1994 ◽  
Vol 107 (9) ◽  
pp. 2403-2416 ◽  
Author(s):  
H.J. van de Velde ◽  
A.J. Roebroek ◽  
N.H. Senden ◽  
F.C. Ramaekers ◽  
W.J. Van de Ven

The novel NSP gene was previously shown to encode, among a variety of neuroendocrine cell types, two 3′-overlapping transcripts, a 3.4 kb one for NSP-A (776 amino acids) and a 1.8 kb one for NSP-C (208 amino acids). The deduced proteins, which were predicted to possess distinct amino-terminal regions, appeared to exhibit some architectural resemblance to known neuroendocrine proteins. In this paper the biochemical characterization and subcellular localization of the two proteins is addressed. In vitro translation of NSP-A and -C RNA produced proteins of about 135 and 23 kDa, respectively. Proteins of similar molecular mass were also detected in immunoprecipitation and western blot analyses of neural and endocrine cells using specific anti-NSP-A or -C antisera; some heterogeneity of NSP-A was observed. NSP-A, but not NSP-C, appeared to be highly phosphorylated and preferentially on serine residues. In immunocytochemical studies, we demonstrated that NSP-A and -C are associated with the endoplasmic reticulum; NSP-A was found to co-localize with SERCA2b, a membrane-associated Ca(2+)-ATPase of the endoplasmic reticulum. In Purkinje cells, we found NSP-immunostaining in the perikaryon, the extensive dendritic tree and the axon, also suggesting association with the smooth endoplasmic reticulum. Biochemical studies of NSP-A provided evidence that NSP-A is strongly associated with microsomal membranes and analysis of deletion mutants of NSP-A revealed that the hydrophobic carboxy-terminal portion of the protein, which is also present in NSP-C, is critical for membrane binding. Through database searches, finally, we found two different NSP-related sequences, one in a sequenced region of human chromosome 19, and the second in a human, pancreatic islet-derived partial cDNA, suggesting that the NSP gene is the prototype of a larger gene family. The results of our studies seem to indicate that the NSP-encoded proteins are novel, membrane-anchored components of the endoplasmic reticulum for which we propose the name reticulons.


2014 ◽  
Vol 67 (3-4) ◽  
pp. 207-216 ◽  
Author(s):  
Grażyna Grymaszewska ◽  
Władysław Golinowski

The structure of syncytia induced by <i>Heterodera schachtii</i> Schmidt in roots of susceptible <i>Raphanus sativus</i> L. cv. "Siletina" and resistant radish cv. "Pegletta" was investigated. In the radish cultivar "Siletina" the syncytia most often appeared in the elongation zone of lateral roots. They were initiated in the procambium and pericycle but also included the parenchyma cells of vascular cylinder. In the susceptible cultivar "Siletina" the cells forming the female's syncytia were subject to hypertrophy. Their cytoplasmic density increased. The cytoplasm contained numerous organella. The proliferation of the smooth endoplasmic reticulum took place. Branched cell wall ingrowths were formed next to the vessels. In the male's syncytia the cells were only slightly increased. Their protoplasts contained few organelles. The cell wall ingrowths were poorly developed. In the syncytia of the resistant cultivar "Pegletta" there was only a slight increase of the cell volume. A well developed system of rough endoplasmic reticulum was observed in the protoplast. Distended ER cisterns contained fine fibrillar material. Material of similar structure also appeared in numerous small vacuoles. In resistant plants only some, not numerous, syncytia spreading in procambium fully developed and functioned long enough for the parasite females to mature. At an advanced stage of infection a well developed system of a rough ER was observed also in those syncytia and numerous vacuoles appeared.


1995 ◽  
Vol 108 (6) ◽  
pp. 2477-2485 ◽  
Author(s):  
A. Schweizer ◽  
J. Rohrer ◽  
J.W. Slot ◽  
H.J. Geuze ◽  
S. Kornfeld

p63 is a type II integral membrane protein that has previously been suggested to be a resident protein of a membrane network interposed between the ER and the Golgi apparatus. In the present study, we have produced a polyclonal antibody against the purified human p63 protein to reassess the subcellular distribution of p63 by confocal immunofluorescence, immunoelectron microscopy, and cell fractionation. Double immunofluorescence of COS cells showed significant colocalization of p63 and a KDEL-containing lumenal ER marker protein, except for differences in the staining of the outer nuclear membrane. Immunoelectron microscopy of native HepG2 cells and of COS cells transfected with p63 revealed that both endogenous and overexpressed p63 are predominantly localized in the rough ER. While p63 was colocalized with protein disulfide isomerase, an ER marker protein, very little overlap of p63 was found with ERGIC-53, an established marker for the ER-Golgi intermediate compartment. When rough and smooth membranes were prepared from rat liver, p63 was found to copurify with ribophorin II, a rough ER protein. Both p63 and ribophorin II were predominantly recovered in rough microsomes and were largely separated from the intermediate compartment marker protein p58. From these results it is concluded that p63 is localized in the rough ER.


Author(s):  
F. G. Zaki

Addition of lithocholic acid (LCA), a naturally occurring bile acid in mammals, to a low protein diet fed to rats induced marked inflammatory reaction in the hepatic cells followed by hydropic degeneration and ductular cell proliferation. These changes were accompanied by dilatation and hyperplasia of the common bile duct and formation of “gallstones”. All these changes were reversible when LCA was withdrawn from the low protein diet except for the hardened gallstones which persisted.Electron microscopic studies revealed marked alterations in the hepatic cells. Early changes included disorganization, fragmentation of the rough endoplasmic reticulum and detachment of its ribosomes. Free ribosomes, either singly or arranged in small clusters were frequently seen in most of the hepatic cells. Vesiculation of the smooth endoplasmic reticulum was often encountered as early as one week after the administration of LCA (Fig. 1).


Author(s):  
Kazushige Hirosawa ◽  
Eichi Yamada

The pigment epithelium is located between the choriocapillary and the visual cells. The pigment epithelial cell is characterized by a large amount of the smooth endoplasmic reticulum (SER) in its cytoplasm. In addition, the pigment epithelial cell of some lower vertebrate has myeloid body as a specialized form of the SER. Generally, SER is supposed to work in the lipid metabolism. However, the functions of abundant SER and myeloid body in the pigment epithelial cell are still in question. This paper reports an attempt, to depict the functions of these organelles in the frog retina by administering one of phospholipid precursors.


Author(s):  
S.M. Geyer ◽  
C.L. Mendenhall ◽  
J.T. Hung ◽  
E.L. Cardell ◽  
R.L. Drake ◽  
...  

Thirty-three mature male Holtzman rats were randomly placed in 3 treatment groups: Controls (C); Ethanolics (E); and Wine drinkers (W). The animals were fed synthetic diets (Lieber type) with ethanol or wine substituted isocalorically for carbohydrates in the diet of E and W groups, respectively. W received a volume of wine which provided the same gram quantity of alcohol consumed by E. The animals were sacrificed by decapitation after 6 weeks and the livers processed for quantitative triglycerides (T3), proteins, malic enzyme activity (MEA), light microscopy (LM) and electron microscopy (EM). Morphometric analysis of randomly selected LM and EM micrographs was performed to determine organellar changes in centrilobular (CV) and periportal (PV) regions of the liver. This analysis (Table 1) showed that hepatocytes from E were larger than those in C and W groups. Smooth endoplasmic reticulum decreased in E and increased in W compared to C values.


Author(s):  
Becky Jackson

Preliminary investigation has indicated similarity in hepatic ultrastructural morphology in nutritional deprivation, and cyanide induced hepatic necrosis. Analysis of hepatic tissue has indicated disruption of intracellular membranes, specifically, reduction in rough endoplasmic reticulum (RER) mitochondrial integrity, and glycogen stores. An increase in smooth endoplasmic reticulum (SER) portion was observed.To further investigate the apparent equivalence of necrotic morphology, ultrastructura1ly, BDF1 mice were subjected to senescence, nutritional deprevation, potassium cyanide (KCN) induced toxemia, and acetaminophen induced toxemia. Controls were utilized to ellucidate non-necrotic hepatocellular normals. U1trastructura1 investigation of controls (Fig. 1) shows densely granular RER, abundant glycogen stores, and morphologically normal mitochondria. Subjects with acetaminophen induced necrosis exhibit reduced normal RER with increased levels of dialated, vesicular RER in apparent conversion to SER (Fig. 2), loss of mitochondrial integrity, and glycogen store reduction. Senescent subjects exhibit a pronounced increase in SER and loss of glycogen store. (Fig. 3). Investigation of the senescent SER at high magnification (Fig. 5) indicates that the SER is arising from degranulating and vesiculating RER.


Author(s):  
R.T.F. Bernard ◽  
R.H.M. Cross

Smooth endoplasmic reticulum (SER) is involved in the biosynthesis of steroid hormones, and changes in the organisation and abundance of this organelle are regularly used as indicators of changes in the level of steroidogenesis. SER is typically arranged as a meshwork of anastomosing tubules which, with the transmission electron microscope, appear as a random mixture of cross, oblique and longitudinal sections. Less commonly the SER appears as swollen vesicles and it is generally suggested that this is an artefact caused during immersion fixation or during immersion of poorly-perfused tissue.During a previous study of the Leydig cells of a seasonally reproducing bat, in which tissue was fixed by immersion, we noted that tubular SER and vesicular SER often occured in adjacent cells and sometimes in the same cell, and that the abundance of the two types of SER changed seasonally. We came to doubt the widelyheld dogma that vesicular SER was an artefact of immersion fixation and set out to test the hypothesis that the method of fixation does not modify the ultrastructure of the SER.


Sign in / Sign up

Export Citation Format

Share Document