HSF1 transcription factor concentrates in nuclear foci during heat shock: relationship with transcription sites

1997 ◽  
Vol 110 (23) ◽  
pp. 2935-2941 ◽  
Author(s):  
C. Jolly ◽  
R. Morimoto ◽  
M. Robert-Nicoud ◽  
C. Vourc'h

In this paper, we show that upon heat shock, HSF1 concentrates in the nucleus of diploid human fibroblasts in two large foci. The relative distribution of HSF1 nuclear foci and active heat shock protein (hsp) genes was investigated by combining fluorescence in situ hybridization (FISH) for the detection of hsp nuclear transcripts and immunofluorescence for the detection of HSF1. We show that the HSF1 foci are distinct from the sites of hsp70 and hsp90 genes transcription. This is the second report of ploidy-dependent foci of transcription factors that are independent of their specific transcription sites. However, the correlation between the number of HSF1 foci and the ploidy of the cells strongly supports the existence of a specific chromosomal target for HSF1 foci.

1988 ◽  
Vol 85 (2) ◽  
pp. 463-467 ◽  
Author(s):  
J. B. Lawrence ◽  
R. H. Singer ◽  
C. A. Villnave ◽  
J. L. Stein ◽  
G. S. Stein

1998 ◽  
Vol 111 (10) ◽  
pp. 1433-1439
Author(s):  
F. Zurita ◽  
R. Jimenez ◽  
M. Burgos ◽  
R.D. de la Guardia

We have developed a procedure for sequential silver staining and in situ hybridization to analyze the relationship between the amount of rDNA present in nucleolar organizer regions, as estimated by in situ hybridization, and their level of expression, as estimated by the silver signal. For simplicity we used cells from the insectivorous mole Talpa occidentalis, which have a single pair of nucleolar organizer regions in chromosome pair 3. The relative content of ribosomal cistrons was also related to the hierarchy of activation of the nucleolar organizer regions present in this chromosomal pair. Statistical analyses demonstrated that both the relative level of expression and the activation hierarchy depended mainly on the number of ribosomal cistrons in nucleolar organizer regions. We propose a functional two-step hypothesis, which is consistent with most known data concerning interchromosomal, intercellular and interindividual variation in a number of plant and animal species, including Talpa occidentalis. In step one, the first available transcription factors bind randomly to the ribosomal promoters, such that larger nucleolar organizer regions are more likely to recruit them. In the second step the remaining transcription factors are recruited in a cooperative way, thus completing activation of one nucleolar organizer region, before the next one becomes active.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Omar E Guessoum ◽  
Kristyna Kupkova ◽  
Nathan Sheffield ◽  
Maria Luisa Sequeira Lopez ◽  
Roberto A Gomez

Introduction: The Renin-Angiotensin-System is essential to maintain blood pressure and fluid electrolyte homeostasis. Because precise regulation of expression and release of renin is critical for survival, understanding the molecular regulation of the renin cell identity is a vital area of study. Advances in epigenetics have enabled finer dissection of chromatin factors which maintain the identity of the renin cell. By studying genes with heightened accessibility profiles that are unique to the JG cell, we now have the capacity to unravel the determinants of the renin cell identity. Hypothesis: That transcription factors central to the governance of renin cell identity can be identified through the Assay for Transposase Accessible Chromatin (ATAC-seq) differential accessibility analysis. Methods: Native renin cell ATAC-seq was compared to existing ENCODE ATAC-seq datasets from 40 other cell types to define regions/peaks which characterize the JG program. Peaks with high intensity and ≥2-fold increase in signal were selected for Motif analysis to search for transcription factors (TFs) whose consensus sequence is enriched in those regions. Identified TFs were then selected for validation by in-situ hybridization and conditional deletion in renin cells. Results: 1) The Mef2c transcription factor was identified as having a consensus sequence in regulatory regions unique to the JG cell. It has clear expression in RNA-seq of renin cells (65 transcripts per million, n=3) and a predicted binding site in the renin gene. These results were validated by in-situ hybridization where signal localized at the JG area was detected in concordance with our in-silico results. 2) We generated Mef2c conditional knockout animals using our Ren1d-Cre mouse to study the effect in renin expression and identity. These mice displayed reduced renin immunostaining at the JG area and a 40% reduction in renin mRNA expression by qPCR from kidney cortices relative to wild-type (n=2, preliminary data). Conclusions: Our studies identified Mef2c as a TF target which likely has an essential role in maintaining and preserving renin cell identity. Experiments involving transcriptomics and epigenomics are ongoing to understand the changes wrought by Mef2c deletion in renin cells.


2017 ◽  
Author(s):  
Scott Ronquist ◽  
Geoff Patterson ◽  
Markus Brown ◽  
Stephen Lindsly ◽  
Haiming Chen ◽  
...  

AbstractThe day we understand the time evolution of subcellular elements at a level of detail comparable to physical systems governed by Newton’s laws of motion seems far away. Even so, quantitative approaches to cellular dynamics add to our understanding of cell biology, providing data-guided frameworks that allow us to develop better predictions about, and methods for, control over specific biological processes and system-wide cell behavior. In this paper, we describe an approach to optimizing the use of transcription factors (TFs) in the context of cellular reprogramming. We construct an approximate model for the natural evolution of a cell cycle synchronized population of human fibroblasts, based on data obtained by sampling the expression of 22,083 genes at several time points along the cell cycle. In order to arrive at a model of moderate complexity, we cluster gene expression based on the division of the genome into topologically associating domains (TADs) and then model the dynamics of the TAD expression levels. Based on this dynamical model and known bioinformatics, such as transcription factor binding sites (TFBS) and functions, we develop a methodology for identifying the top transcription factor candidates for a specific cellular reprogramming task. The approach used is based on a device commonly used in optimal control. Our data-guided methodology identifies a number of transcription factors previously validated for reprogramming and/or natural differentiation. Our findings highlight the immense potential of dynamical models, mathematics, and data-guided methodologies for improving strategies for control over biological processes.Significance StatementReprogramming the human genome toward any desirable state is within reach; application of select transcription factors drives cell types toward different lineages in many settings. We introduce the concept of data-guided control in building a universal algorithm for directly reprogramming any human cell type into any other type. Our algorithm is based on time series genome transcription and architecture data and known regulatory activities of transcription factors, with natural dimension reduction using genome architectural features. Our algorithm predicts known reprogramming factors, top candidates for new settings, and ideal timing for application of transcription factors. This framework can be used to develop strategies for tissue regeneration, cancer cell reprogramming, and control of dynamical systems beyond cell biology.


2018 ◽  
Author(s):  
Peter Chisnell ◽  
T. Richard Parenteau ◽  
Elizabeth Tank ◽  
Kaveh Ashrafi ◽  
Cynthia Kenyon

AbstractThe widely conserved heat-shock response, regulated by heat shock transcription factors, is not only essential for cellular stress resistance and adult longevity, but also for proper development. However, the genetic mechanisms by which heat-shock transcription factors regulate development are not well understood. In C. elegans, we conducted an unbiased genetic screen to identify mutations that could ameliorate the developmental arrest phenotype of a heat-shock factor mutant. Here we show that loss of the conserved translational activator rsks-1/S6-Kinase, a downstream effector of TOR kinase, can rescue the developmental-arrest phenotype of hsf-1 partial loss-of-function mutants. Unexpectedly, we show that the rescue is not likely caused by reduced translation, nor to activation of any of a variety of stress-protective genes and pathways. Our findings identify an as-yet unexplained regulatory relationship between the heat-shock transcription factor and the TOR pathway during C. elegans’ development.


Development ◽  
1991 ◽  
Vol 113 (2) ◽  
pp. 715-722 ◽  
Author(s):  
M. Torres ◽  
L. Sanchez

The gene scute (sc) has a dual function: the scute function which is involved in neurogenesis and the sisterless-b function which is involved in generating the X:A signal that determines the state of activity of Sxl, a gene that controls sex determination and dosage compensation. We show here that the lethal phase of sc- females is embryonic and caused by the lack of Sxl function. We also analyze the time in development when sc and Sxl interact by means of (a) determining the thermosensitive phase (TSP) of the interaction between Sxl and sc and (b) a chimeric gene in which sc is under the control of a heat-shock promoter (HSSC-3). Pulses of sc expression from the HSSC-3 activate Sxl only at a very specific and early stage in development, which coincides with the TSP of the interaction between sc and Sxl. It corresponds to the syncytial blastoderm stage and coincides with the time when the X:A signal regulates Sxl. At this stage sc undergoes a homogeneous transient expression in wild-type flies. We conclude that the sc expression at the syncytial blastoderm is responsible for its sisterless-b function. Since sc expression from the HSSC-3 fully suppresses the sisterless-b phenotype, we further conclude that the sisterless-b function is exclusively provided by the sc protein. Finally, we have analyzed, by in situ hybridization, the effect of sc and sis-a mutations on the embryonic transcription of Sxl. Our results support the view that the control of Sxl by the X:A signal occurs at the transcriptional level.


2003 ◽  
Vol 88 (7) ◽  
pp. 3050-3056 ◽  
Author(s):  
Sophie Vallette-Kasic ◽  
Dominique Figarella-Branger ◽  
Michel Grino ◽  
Anne-Marie Pulichino ◽  
Henry Dufour ◽  
...  

Since the identification of the pituitary-restricted transcription factor Tpit, a novel T-box factor that is only present in mouse in the two pituitary proopiomelanocortin (POMC)-expressing lineages, no information was available on its pattern of expression in human pituitary. We investigated by immunohistochemistry and in situ hybridization the expression of TPIT in normal human anterior pituitary tissue and in several types of human pituitary adenomas (n = 52). TPIT expression was restricted to the nucleus of normal or adenomatous human corticotroph cells. No specific TPIT immunostaining was detectable in all prolactin (PRL)-, GH-, or gonadotropin-secreting adenomas. In situ hybridization studies demonstrated that TPIT transcripts were coexpressed with POMC mRNA in both secreting and silent corticotroph adenomas, and in normal corticotrophs, whereas TPIT mRNA was not detectable in other types of pituitary adenomas. Unlike POMC, TPIT was not up-regulated by adrenalectomy in rats and did not seem down-regulated in the normal pituitary adjacent to human corticotroph microadenomas. TPIT is the only currently known transcription factor selectively expressed in human normal and adenomatous corticotrophs. In human and experimental models, TPIT and its target gene POMC were thus differentially regulated by glucocorticoids. Moreover, TPIT represents a new marker of POMC-expressing pituitary cells.


Sign in / Sign up

Export Citation Format

Share Document