Domains of tenascin involved in glioma migration

1998 ◽  
Vol 111 (8) ◽  
pp. 1095-1104
Author(s):  
G.R. Phillips ◽  
L.A. Krushel ◽  
K.L. Crossin

Tenascin (TN) is an extracellular matrix protein found in areas of cell migration during development and expressed at high levels in migratory tumor cells. TN was previously shown to support the attachment and migration of glioma cells in culture. To determine the domains responsible for glioma migration and attachment, we produced recombinant fusion proteins that collectively span the majority of the molecule including its epidermal growth factor-like repeats, fibronectin type III repeats and fibrinogen domain. These domains were tested for their ability to support migration of C6 glioma cells in an aggregate migration assay. A recombinant fusion protein including fibronectin type III (FNIII) repeats 2–6 (TNfn2-6) was the only fragment found to promote migration of C6 glioma cells at levels similar to that promoted by intact TN. Evaluation of smaller segments and individual FNIII repeats revealed that TNfn3 promoted migration and attachment of glioma cells and TNfn6 promoted migration but not attachment. While TNfn3 and TNfn6 promoted migration individually, the presence of both TNfn3 and TNfn6 was required for migration on segments of the FNIII region that included TNfn5. TNfn5 inhibited migration in a dose dependent manner when mixed with TNfn3 and also promoted strong attachment and spreading of C6 glioma cells. TNfn3 and TNfn6 promote cell migration and may function cooperatively to overcome the inhibitory activity of TNfn5. Additional cell attachment studies suggested that both beta1 integrins and heparin may differentially influence the attachment of glioma cells to TN fragments. Together, these findings show that C6 glioma cells integrate their response upon binding to at least three domains within TN.

1992 ◽  
Vol 119 (3) ◽  
pp. 663-678 ◽  
Author(s):  
A L Prieto ◽  
C Andersson-Fisone ◽  
K L Crossin

The extracellular matrix molecule cytotactin is a multidomain protein that plays a role in cell migration, proliferation, and differentiation during development. To analyze the structure-function relationships of the different domains of this glycoprotein, we have prepared a series of fusion constructs in bacterial expression vectors. Results obtained using a number of adhesion assays suggest that at least four independent cell binding regions are distributed among the various cytotactin domains. Two of these are adhesive; two others appear to be counteradhesive in that they inhibit cell attachment to otherwise favorable substrates. The adhesive regions were mapped to the fibronectin type III repeats II-VI and the fibrinogen domain. The morphology of the cells plated onto these adhesive fragments differed; the cells spread on the fibronectin type III repeats as they do on fibronectin, but remained round on the fibrinogen domain. The counteradhesive properties of the molecule were mapped to the EGF-like repeats and the last two fibronectin type III repeats, VII-VIII. The latter region also contained a cell attachment activity that was observed only after proteolysis of the cells. Several cell types were used in these analyses, including fibroblasts, neurons, and glia, all of which are known to bind to cytotactin. The different domains exert their effects in a concentration-dependent manner and can be inhibited by an excess of the soluble molecule, consistent with the hypothesis that the observed properties are mediated by specific receptors. Moreover, it appears that some of these receptors are restricted to particular cell types. For example, glial cells bound better than neurons to the fibrinogen domain and fibroblasts bound better than glia and neurons to the EGF fragment. These results provide a basis for understanding the multiple activities of cytotactin and a framework for isolating different receptors that mediate the various cellular responses to this molecule.


2021 ◽  
Vol 16 (10) ◽  
pp. 43-49
Author(s):  
Precilla S. Daisy ◽  
S. Kuduvalli Shreyas ◽  
R. Sathish ◽  
T.S. Anitha

Glioma is one of the most devastating and difficult-totreat brain tumors with a very poor prognosis. Despite the current treatment modalities, the overall survival rate is only 5% contributing to a high mortality rate. Nevertheless, of emerging treatment strategies, there is still a rising need for novel mitigation strategies to counteract glioma aggressiveness. One attempt towards this long-term goal was made in this study to reveal the combined efficacy of naringenin, a bioactive flavonoid on enhancing the anti-glioma potency of temozolomide in C6 glioma cells. The cytotoxic effect of temozolomide and naringenin, both individually and in combination was assessed by employing MTT assay. The synergistic effect of the drugs temozolomide and naringenin was determined by calculating the combination index. To confirm the presence of apoptotic changes in the cells at morphological level, acridine orange/ethidium bromide staining was performed. Further, the modulatory effects of the drugs on apoptotic genes, caspase-3 and BCL-2 were evaluated using quantitative real time-PCR. Interestingly, we found that the combinatorial drug treatment was in consensus and effectively inhibited the growth of C6 glioma cells in a dose-dependent manner. Furthermore, this combinatorial drug treatment significantly up-regulated the expression of the proapoptotic gene, caspase-3 and down-regulated the anti-apoptotic gene BCL-2 suggesting a shift of equilibrium towards apoptosis. Our findings suggest that naringenin can be employed as a potent drug to enhance the anti-glioma efficacy of temozolomide and could be therapeutically exploited for the management of glioma.


1991 ◽  
Vol 260 (5) ◽  
pp. R1000-R1006 ◽  
Author(s):  
N. Jaiswal ◽  
D. I. Diz ◽  
E. A. Tallant ◽  
M. C. Khosla ◽  
C. M. Ferrario

The heptapeptide angiotensin (ANG)-(1-7) mimics some but not all the central actions of ANG II, suggesting that receptor subtypes may exist. The effects of ANG-(1-7), ANG II, and ANG I on prostaglandin (PG) E2 and prostacyclin (PGI2) synthesis were investigated in neurally derived rat C6 glioma cells. All three ANG peptides stimulated PG release in a dose-dependent manner with the order of potency ANG-(1-7) greater than ANG I greater than ANG II. PGE2 release induced by ANG-(1-7) (10(-7) M) was partially blocked by [Sar1,Ile8]ANG II (10(-6) M), [Sar1,Thr8]ANG II (10(-6) M), or the subtype 1 selective antagonist Du Pont 753 (10(-5) M) but not by the subtype 2 selective antagonist CGP 42112A (10(-7)-10(-5) M). PGI2 release was inhibited only by [Sar1,Thr8]ANG II. ANG II-induced PGE2 release was blocked by [Sar1,Thr8]ANG II (10(-6) M), [Sar1,Ile8]ANG II (10(-6) M), or Du Pont 753 (10(-7) M) but not by CGP 42112A (10(-7)-10(-5) M). In contrast, ANG II-induced PGI2 release was blocked by Du Pont 753 (10(-7) M) as well as [Sar1,Ile8]ANG II (10(-6) M) but not by [Sar1,Thr8]ANG II or CGP 42112A. Thus ANG II-stimulated PGE2 and PGI2 syntheses in C6 glioma cells are mediated via receptor subtype 1. ANG-(1-7)-induced PGE2 synthesis is also mediated via subtype 1 receptors; however, PGI2 release was blocked by [Sar1,Thr8]ANG II only.(ABSTRACT TRUNCATED AT 250 WORDS)


1992 ◽  
Vol 116 (6) ◽  
pp. 1475-1486 ◽  
Author(s):  
K Husmann ◽  
A Faissner ◽  
M Schachner

The extracellular matrix molecule tenascin has been implicated in neuron-glia recognition in the developing central and peripheral nervous system and in regeneration. In this study, its role in Bergmann glial process-mediated neuronal migration was assayed in vitro using tissue explants of the early postnatal mouse cerebellar cortex. Of the five mAbs reacting with nonoverlapping epitopes on tenascin, mAbs J1/tn1, J1/tn4, and J1/tn5, but not mAbs J1/tn2 and J1/tn3 inhibited granule cell migration. Localization of the immunoreactive domains by EM of rotary shadowed tenascin molecules revealed that the mAbs J1/tn4 and J1/tn5, like the previously described J1/tn1 antibody, bound between the third and fifth fibronectin type III homologous repeats and mAb J1/tn3 bound between the third and fifth EGF-like repeats. mAb J1/tn2 had previously been found to react between fibronectin type III homologous repeats 10 and 11 of the mouse molecule (Lochter, A., L. Vaughan, A. Kaplony, A. Prochiantz, M. Schachner, and A. Faissner. 1991. J. Cell Biol. 113:1159-1171). When postnatal granule cell neurons were cultured on tenascin adsorbed to polyornithine, both the percentage of neurite-bearing cells and the length of outgrowing neurites were increased when compared to neurons growing on polyornithine alone. This neurite outgrowth promoting effect of tenascin was abolished only by mAb J1/tn2 or tenascin added to the culture medium in soluble form. The other antibodies did not modify the stimulatory or inhibitory effects of the molecule. These observations indicate that tenascin influences neurite outgrowth and migration of cerebellar granule cells by different domains in the fibronectin type III homologous repeats.


2018 ◽  
Vol 14 (9) ◽  
pp. 12
Author(s):  
Ahmed S. Hisab

Antidepressants (ADs) such as fluoxetine is known to target and inhibit the electron transport chain of mitochondrial, effects on rat C6 glioma cell function are expected. Also, it has been shown that fluoxetine can inhibit mitochondrial respiration in pancreatic beta cells; however whether this drug can also directly affect glycolytic metabolism is unknown. To address this idea, I have investigated effect of fluoxetine on the bioenergetics of C6 glioma. MTS assay was conducted as an indicator of the metabolic activity of C6 cell lines. Oxidative respiration was measured via oxygen consumption rate (OCR), anaerobic glycolysis was determined with lactate electrodes, where mitochondrial redox state was monitored via NAD (P) H autofluorescence. The metabolic assays showed glucose stimulated MTS reduction cells in a time and concentration dependent manner whereas, the other three mitochondrial fuels did not stimulated it in C6 glioma cells. Methylpyruvate substrate stimulated OCR, neither both glucose and α-ketoisocaproate. Glucose inhibited OCR and increased lactate production compared to the control. Glucose failed to affect NADPH levels. Fluoxetine inhibited OCR at 10 mM glucose. However, it did not affect OCR at 10 mM α-ketoisocaproate. The above results showed that C6 glioma cells are mainly depending on the glycolytic pathway and that was inhibited by Fluoxetine. In conclusion, since fluoxetine was inactive in the presence of α-ketoisocaproate our data suggest that the point of major action for these ADs in C6 glioma cells is glycolysis.


2012 ◽  
Vol 67 (3-4) ◽  
pp. 222-232
Author(s):  
Seungwan Yoo ◽  
Yong Gyu Lee ◽  
Ji Hye Kim ◽  
Se Eun Byeon ◽  
Ho Sik Rho ◽  
...  

Histone acetylation is linked to the control of chromatin remodeling, which is involved in cell growth, proliferation, and differentiation. It is not fully understood whether cyclic adenosine monophosphate (cAMP), a representative differentiation-inducing molecule, is able to modulate histone acetylation as part of its anticancer activity. In the present study, we aimed to address this issue using cell-permeable cAMP, i.e. dibutyryl cAMP (dbcAMP) and C6 glioma cells. As reported previously, under the conditions of our studies, treatment with dbcAMP clearly arrested C6 cell proliferation and altered their morphology. Its antiproliferative and differentiation-inducing activity in C6 glioma cells involved upregulation of p21WAF/CIP, p27kip1, glial fibrillary acidic protein (GFAP), and Cx43, as well as downregulation of vimentin. Furthermore, dbcAMP modulated the phosphorylation of ERK and Akt in a time-dependent manner and altered the colocalization pattern of phospho-Src and the actin cytoskeleton. Interestingly, dbcAMP upregulated the enzyme activity of histone acetyltransferase (HAT) and, in parallel, enhanced cellular acetyllysine levels. Finally, the hyperacetylation- inducing compound, sodium butyrate (NaB), a histone deacetylase (HDAC) inhibitor, displayed similar anticancer activity to dbcAMP. Therefore, our data suggest that antiproliferative and differentiation-inducing activities of dbcAMP may be generated by its enhanced hyperacetylation function


Molecules ◽  
2019 ◽  
Vol 24 (10) ◽  
pp. 2005 ◽  
Author(s):  
Guya Diletta Marconi ◽  
Marialucia Gallorini ◽  
Simone Carradori ◽  
Paolo Guglielmi ◽  
Amelia Cataldi ◽  
...  

Gliomas are malignant brain tumors characterized by rapid spread and growth into neighboring tissues and graded I–IV by the World Health Organization. Glioblastoma is the fastest growing and most devastating IV glioma. The aim of this paper is to evaluate the biological effects of two potent and selective Monoamine Oxidase B (MAO-B) inhibitors, Cmp3 and Cmp5, in C6 glioma cells and in CTX/TNA2 astrocytes in terms of cell proliferation, apoptosis occurrence, inflammatory events and cell migration. These compounds decrease C6 glioma cells viability sparing normal astrocytes. Cell cycle analysis, the Mitochondrial Membrane Potential (MMP) and Reactive Oxygen Species (ROS) production were detected, revealing that Cmp3 and Cmp5 induce a G1 or G2/M cell cycle arrest, as well as a MMP depolarization and an overproduction of ROS; moreover, they inhibit the expression level of inducible nitric oxide synthase 2, thus contributing to fatal drug-induced oxidative stress. Cmp5 notably reduces glioma cell migration via down-regulating Matrix Metalloproteinases 2 and 9. This study demonstrated that our novel MAO-B inhibitors increase the oxidative stress level resulting in a cell cycle arrest and markedly reduces glioma cells migration thus reinforcing the hypothesis of a critical role-played by MAO-B in mediating oncogenesis in high-grade gliomas.


Author(s):  
Wang Gang ◽  
Wang Gang ◽  
JunJie Wang ◽  
GuangYi Yang ◽  
ShiMing Du ◽  
...  

2021 ◽  
Vol 16 ◽  
Author(s):  
Shreyas S. Kuduvalli ◽  
Daisy Precilla S. ◽  
A. Vinodhini ◽  
T. S. Anitha

Aim: To study the synergistic anti-glioma efficacies of Temozolomide, Metformin and Epigallocatechin Gallate in U87MG and C6 glioma cells. Background: Glioblastoma (GBM) is the most malignant and invasive tumor of the central nervous system. The current standard treatment comprises surgical resection, followed by adjuvant radiotherapy and chemotherapy employing temozolomide (TMZ). Yet the survival rates for GBM patients is very low. Hence there is a need for new treatment regimes Objective: This study was aimed to unravel the synergistic anti-tumor potential of a biguanide drug, Metformin (MET) and a polyphenol, Epigallocatechin gallate (EGCG) to enhance the anti-GBM efficacy of the standard drug. Methods: Anti-proliferative effect of TMZ, MET and EGCG, individually and in combination was elucidated in U87MG (human) and C6 (rat) glioma cells using MTT assay and combination index was used to determine synergism. Cytotoxicity of the drugs was performed in HEK293T noncancerous cells. Apoptotic morphological changes in the cells were observed by AO/EtBr staining. Further, the effect of drugs on antioxidant and apoptotic genes (SOD, CAT, Nrf-2, Caspase-9 and Bcl-2) were evaluated using qRT-PCR and the protein levels of Nrf-2 and Caspase-9 was evaluated using ELISA. Results: The triple-drug combination (TMZ+ MET+ EGCG) synergistically inhibited the proliferation of U87MG and C6 glioma cells in a dose-dependent manner and promoted the apoptosis of glioma cells. The triple-drug combination significantly up-regulated the expression of antioxidant and apoptotic genes and induced oxidative stress suggesting a shift in equilibrium towards apoptosis. Conclusion: MET and EGCG in combination with TMZ synergistically promoted oxidative stress induced apoptosis in glioma cells. Hence, the combination of TMZ, MET and EGCG may be therapeutically exploited for improving the clinical outcomes of patients with GBM.


Sign in / Sign up

Export Citation Format

Share Document