VAP-33 localizes to both an intracellular vesicle population and with occludin at the tight junction

1999 ◽  
Vol 112 (21) ◽  
pp. 3723-3732 ◽  
Author(s):  
L.A. Lapierre ◽  
P.L. Tuma ◽  
J. Navarre ◽  
J.R. Goldenring ◽  
J.M. Anderson

Tight junctions create a regulated intercellular seal between epithelial and endothelial cells and also establish polarity between plasma membrane domains within the cell. Tight junctions have also been implicated in many other cellular functions, including cell signaling and growth regulation, but they have yet to be directly implicated in vesicle movement. Occludin is a transmembrane protein located at tight junctions and is known to interact with other tight junction proteins, including ZO-1. To investigate occludin's role in other cellular functions we performed a yeast two-hybrid screen using the cytoplasmic C terminus of occludin and a human liver cDNA library. From this screen we identified VAP-33 which was initially cloned from Aplysia by its ability to interact with VAMP/synaptobrevin and thus was implicated in vesicle docking/fusion. Extraction characteristics indicated that VAP-33 was an integral membrane protein. Antibodies to the human VAP-33 co-localized with occludin at the tight junction in many tissues and tissue culture cell lines. Subcellular fractionation of liver demonstrated that 83% of VAP-33 co-isolated with occludin and DPPIV in a plasma membrane fraction and 14% fractionated in a vesicular pool. Thus, both immunofluorescence and fractionation data suggest that VAP-33 is present in two distinct pools in the cells. In further support of this conclusion, a GFP-VAP-33 chimera also distributed to two sites within MDCK cells and interestingly shifted occludin's localization basally. Since VAP-33 has previously been implicated in vesicle docking/fusion, our results suggest that tight junctions may participate in vesicle targeting at the plasma membrane or alternatively VAP-33 may regulate the localization of occludin.

1999 ◽  
Vol 146 (3) ◽  
pp. 683-693 ◽  
Author(s):  
Laura L. Mitic ◽  
Eveline E. Schneeberger ◽  
Alan S. Fanning ◽  
James Melvin Anderson

Occludin is a transmembrane protein of the tight junction that functions in creating both an intercellular permeability barrier and an intramembrane diffusion barrier. Creation of the barrier requires the precise localization of occludin, and a distinct family of transmembrane proteins called claudins, into continuous linear fibrils visible by freeze-fracture microscopy. Conflicting evidence exists regarding the relative importance of the transmembrane and extracellular versus the cytoplasmic domains in localizing occludin in fibrils. To specifically address whether occludin's COOH-terminal cytoplasmic domain is sufficient to target it into tight junction fibrils, we created chimeras with the transmembrane portions of connexin 32. Despite the gap junction targeting information present in their transmembrane and extracellular domains, these connexin-occludin chimeras localized within fibrils when expressed in MDCK cells, as assessed by immunofluorescence and immunogold freeze-fracture imaging. Localization of chimeras at tight junctions depends on the COOH-terminal ZO-binding domain and not on the membrane proximal domain of occludin. Furthermore, neither endogenous occludin nor claudin is required for targeting to ZO-1–containing cell–cell contacts, since in normal rat kidney fibroblasts targeting of chimeras again required only the ZO-binding domain. These results suggest an important role for cytoplasmic proteins, presumably ZO-1, ZO-2, and ZO-3, in localizing occludin in tight junction fibrils. Such a scaffolding and cytoskeletal coupling function for ZO MAGUKs is analogous to that of other members of the MAGUK family.


1999 ◽  
Vol 10 (10) ◽  
pp. 3187-3196 ◽  
Author(s):  
Mikael Simons ◽  
Tim Friedrichson ◽  
Jörg B. Schulz ◽  
Marina Pitto ◽  
Massimo Masserini ◽  
...  

Exogenous application of gangliosides to cells affects many cellular functions. We asked whether these effects could be attributed to the influence of gangliosides on the properties of sphingolipid–cholesterol microdomains on the plasma membrane, also termed rafts. The latter are envisaged as lateral assemblies of sphingolipids (including gangliosides), cholesterol, and a specific set of proteins. Rafts have been implicated in processes such as membrane trafficking, signal transduction, and cell adhesion. Recently, using a chemical cross-linking approach with Madin-Darby canine kidney (MDCK) cells permanently expressing a GPI-anchored form of growth hormone decay accelerating factor (GH-DAF) as a model system, we could show that GPI-anchored proteins are clustered in rafts in living cells. Moreover, this clustering was dependent on the level of cholesterol in the cell. Here we show that incubation of MDCK cells with gangliosides abolished subsequent chemical cross-linking of GH-DAF. Furthermore, insertion of gangliosides into the plasma membrane of MDCK GH-DAF cells renders GH-DAF soluble when subjected to extraction with Triton X-114 at 4°C. Our data suggest that exogenous application of gangliosides displaces GPI-anchored proteins from sphingolipid–cholesterol microdomains in living cells.


2006 ◽  
Vol 74 (12) ◽  
pp. 6581-6589 ◽  
Author(s):  
Ming L. Chen ◽  
Zhongming Ge ◽  
James G. Fox ◽  
David B. Schauer

ABSTRACT Campylobacter jejuni is a leading cause of human enterocolitis and is associated with postinfectious complications, including irritable bowel syndrome and Guillain-Barré syndrome. However, the pathogenesis of C. jejuni infection remains poorly understood. Paracellular pathways in intestinal epithelial cells are gated by intercellular junctions (tight junctions and adherens junctions), providing a functional barrier between luminal microbes and host immune cells in the lamina propria. Here we describe alterations in tight junctions in intestinal epithelial monolayers following C. jejuni infection. Apical infection of polarized T84 monolayers caused a time-dependent decrease in transepithelial electrical resistance (TER). Immunofluorescence microscopy revealed a redistribution of the tight junctional transmembrane protein occludin from an intercellular to an intracellular location. Subcellular fractionation using equilibrium sucrose density gradients demonstrated decreased hyperphosphorylated occludin in lipid rafts, Triton X-100-soluble fractions, and the Triton X-100-insoluble pellet following apical infection. Apical infection with C. jejuni also caused rapid activation of NF-κB and AP-1, phosphorylation of extracellular signal-regulated kinase, Jun N-terminal protein kinase, and p38 mitogen-activated protein kinases, and basolateral secretion of the CXC chemokine interleukin-8 (IL-8). Basolateral infection with C. jejuni caused a more rapid decrease in TER, comparable redistribution of tight-junction proteins, and secretion of more IL-8 than that seen with apical infection. These results suggest that compromised barrier function and increased chemokine expression contribute to the pathogenesis of C. jejuni-induced enterocolitis.


2004 ◽  
Vol 15 (3) ◽  
pp. 1324-1333 ◽  
Author(s):  
Céline Lemmers ◽  
Didier Michel ◽  
Lydie Lane-Guermonprez ◽  
Marie-Hélène Delgrossi ◽  
Emmanuelle Médina ◽  
...  

Crumbs is an apical transmembrane protein crucial for epithelial morphogenesis in Drosophila melanogaster embryos. A protein with all the characteristics for a Crumbs homologue has been identified from patients suffering from retinitis pigmentosa group 12, but this protein (CRB1) is only expressed in retina and some parts of the brain, both in human and mouse. Here, we describe CRB3, another Crumbs homologue that is preferentially expressed in epithelial tissues and skeletal muscles in human. CRB3 shares the conserved cytoplasmic domain with other Crumbs but exhibits a very short extracellular domain without the EGF- and laminin A-like G repeats present in the other Crumbs. CRB3 is localized to the apical and subapical area of epithelial cells from the mouse and human intestine, suggesting that it could play a role in epithelial morphogenesis. Indeed, expression of CRB3 or of a chimera containing the extracellular domain of the neurotrophin receptor p75NTR and the transmembrane and cytoplasmic domains of CRB3 led to a slower development of functional tight junctions in Madin-Darby canine kidney cells. This phenotype relied on the presence of CRB3 four last amino acids (ERLI) that are involved in a direct interaction with Par6, a regulator of epithelial polarity and tight junction formation. Thus, CRB3, through its cytoplasmic domain and its interactors, plays a role in apical membrane morphogenesis and tight junction regulation.


2000 ◽  
Vol 113 (13) ◽  
pp. 2363-2374 ◽  
Author(s):  
Y. Liu ◽  
A. Nusrat ◽  
F.J. Schnell ◽  
T.A. Reaves ◽  
S. Walsh ◽  
...  

Epithelial cells form a highly selective barrier and line many organs. The epithelial barrier is maintained by closely apposed cell-cell contacts containing tight junctions, the regulation of which is incompletely understood. Here we report the cloning, tissue localization and evidence for a role in epithelial barrier regulation of an immunoglobulin superfamily member that likely represents the human homolog of murine junction adhesion molecule (JAM). Analysis of the primary structure of human JAM, cloned from T84 epithelial cells, predicts a transmembrane protein with an extracellular domain that contains two IgV loops. Monoclonal antibodies generated against the putative extracellular domain were reactive with a 35–39 kDa protein from both T84 epithelial cells and human neutrophils. By immunofluorescence, JAM mAbs labeled epithelial cells from intestine, lung, and kidney, prominently in the region of tight junctions (co-localization with occludin) and also along lateral cell membranes below the tight junctions. Flow cytometric studies confirmed predominant JAM expression in epithelial cells but also revealed expression on endothelial and hematopoietic cells of all lineages. Functional studies demonstrated that JAM specific mAbs markedly inhibited transepithelial resistance recovery of T84 monolayers after disruption of intercellular junctions (including tight junctions) by transient calcium depletion. Morphologic analysis revealed that, after disassembly of cell-cell junctions, anti-JAM inhibition of barrier function recovery correlated with a loss of both occludin and JAM, but not ZO-1, in reassembling tight junction structure. Reassembly of the major adherens junction component E-cadherin was not affected by JAM specific mAbs. Our findings suggest that JAM plays an important role in the regulation of tight junction assembly in epithelia. Furthermore, these JAM-mediated effects may occur by either direct, or indirect interactions with occludin.


1990 ◽  
Vol 97 (1) ◽  
pp. 119-125
Author(s):  
E. Cohen ◽  
I. Ophir ◽  
Y.I. Henis ◽  
A. Bacher ◽  
Y. Ben Shaul

In the human colon adenocarcinoma cell line HT29, tight junctions can be induced by treatment with appropriate proteases or salt solutions. The temperature dependence of induced tight junction formation is characterized by a marked sigmoidal behavior. The different methods of induction used in this study were characterized by threshold temperatures ranging from 15 to 32 degrees C. Fluorescence photobleaching recovery measurements of the lateral diffusion of a fluorescent phospholipid probe in the cellular plasma membrane gave no evidence for a phase transition or for alteration in the organization of membrane lipids in lateral domains in the temperature range between 0 and 37 degrees C. Moreover, dynamic parameters of the probe in the plasma membrane did not change substantially on mild treatment with trypsin. Thus, the temperature dependence of tight junction formation is not dictated by the bulk properties of the cytoplasmic membrane lipids. The observed temperature dependence suggests that the assembly of tight junctions is a cooperative process, which may involve conformational rearrangement in a protein precursor subsequent to its proteolytic activation.


2008 ◽  
Vol 19 (11) ◽  
pp. 4687-4693 ◽  
Author(s):  
Junichi Ikenouchi ◽  
Hiroyuki Sasaki ◽  
Sachiko Tsukita ◽  
Mikio Furuse ◽  
Shoichiro Tsukita

The tricellular tight junction (tTJ) forms at the convergence of bicellular tight junctions (bTJs) where three epithelial cells meet in polarized epithelia, and it is required for the maintenance of the transepithelial barrier. Tricellulin is a four transmembrane domain protein recently identified as the first marker of tTJ, but little is known about how tricellulin is localized at tTJs. As for the molecular mechanism of association of tricellulin with tight junctions (TJs), we found that tricellulin was incorporated into claudin-based TJs independently of binding to zona occludens-1. Unexpectedly, exogenous expression of tricellulin increased cross-links of TJ strands in the plasma membrane. As for the molecular mechanisms for localization of tricellulin at tricellular junctions, we found that knockdown of occludin caused mislocalization of tricellulin to bTJs, implying that occludin supports tricellular localization of tricellulin by excluding tricellulin from bTJs.


1997 ◽  
Vol 273 (6) ◽  
pp. C1859-C1867 ◽  
Author(s):  
Vivian Wong

Multiple forms of occludin were found in Madin-Darby canine kidney (MDCK) cells. In the absence of cell-to-cell contacts, achieved by incubating cells in low-calcium growth medium, a cluster of lower-molecular-weight (LMW) occludin bands (∼65,000–68,000) was present in both MDCK I and II cells. On formation of tight junctions, achieved by changing the low-calcium growth medium to normal-calcium growth medium, a cluster of higher-molecular-weight (HMW) bands (∼72,000–75,000 for MDCK I cells and ∼70,000–73,000 for MDCK II cells) was also expressed. The HMW occludin bands could be eliminated by phosphatase treatment. Therefore, the HMW forms of occludin appeared to be the hyperphosphorylated product of the LMW forms. These HMW forms were Triton X-100 insoluble, which correlated with their localization at the tight junctions. Furthermore, depletion of tight junction-localized occludin by an occludin extracellular domian peptide (20) correlated with a decrease in the HMW forms of occludin. In conclusion, phosphorylation of occludin may be a mechanism by which occludin localization and function are regulated.


Author(s):  
Greg Martin ◽  
Rohit Cariappa ◽  
Ann L. Hubbard

The plasma membrane of polarized epithelial cells is composed of two structurally and functionally distinct domains -- the apical and basolateral -- that also differ in molecular composition. The routes followed by integral membrane proteins from their site of synthesis to their site of function varies between different kinds of epithelia. Madin-Darby canine kidney (MDCK) cells deliver plasma membrane proteins directly to the correct domain, while polarized hepatocytes deliver all newly synthesized plasma membrane proteins initially to the basolateral membrane, then retrieve and redirect the apical membrane proteins. We are studying the targeting signals and delivery routes of DPPIV, a single transmembrane protein whose destination is the apical domain in polarized epithelial cells.DPPIV transfected into MDCK cells is delivered to the basolateral plasma membrane after long (13hr) treatment with Brefeldin A (BFA). After BFA’s removal these molecules are retrieved from the basolateral membrane and transcytosed to the apical plasma membrane. This protocol provides a useful model for studies of the indirect route of protein sorting in polarized epithelial cells, since DPPIV at the basolateral surface can be labeled with specific antibody and then subsequently followed in living cells.


Sign in / Sign up

Export Citation Format

Share Document