scholarly journals N-Ras induces alterations in Golgi complex architecture and in constitutive protein transport

1999 ◽  
Vol 112 (4) ◽  
pp. 477-489 ◽  
Author(s):  
T. Babia ◽  
I. Ayala ◽  
F. Valderrama ◽  
E. Mato ◽  
M. Bosch ◽  
...  

Aberrant glycosylation of proteins and lipids is a common feature of many tumor cell types, and is often accompanied by alterations in membrane traffic and an anomalous localization of Golgi-resident proteins and glycans. These observations suggest that the Golgi complex is a key organelle for at least some of the functional changes associated with malignant transformation. To gain insight into this possibility, we have analyzed changes in the structure and function of the Golgi complex induced by the conditional expression of the transforming N-Ras(K61) mutant in the NRK cell line. A remarkable and specific effect associated with this N-Ras-induced transformation was a conspicuous rearrangement of the Golgi complex into a collapsed morphology. Ultrastructural and stereological analyses demonstrated that the Golgi complex was extensively fragmented. The collapse of the Golgi complex was also accompanied by a disruption of the actin cytoskeleton. Functionally, N-Ras-transformed KT8 cells showed an increase in the constitutive protein transport from the trans-Golgi network to the cell surface, and did not induce the appearance of aberrant cell surface glycans. The Golgi complex collapse, the actin disassembly, and the increased constitutive secretion were all partially inhibited by the phospholipase A2 inhibitor 4-bromophenylacyl bromide. The results thus suggest the involvement of the actin cytoskeleton in the shape of the Golgi complex, and intracellular phospholipase A2 in its architecture and secretory function.

2005 ◽  
Vol 72 ◽  
pp. 119-127 ◽  
Author(s):  
Tamara Golub ◽  
Caroni Pico

The interactions of cells with their environment involve regulated actin-based motility at defined positions along the cell surface. Sphingolipid- and cholesterol-dependent microdomains (rafts) order proteins at biological membranes, and have been implicated in most signalling processes at the cell surface. Many membrane-bound components that regulate actin cytoskeleton dynamics and cell-surface motility associate with PtdIns(4,5)P2-rich lipid rafts. Although raft integrity is not required for substrate-directed cell spreading, or to initiate signalling for motility, it is a prerequisite for sustained and organized motility. Plasmalemmal rafts redistribute rapidly in response to signals, triggering motility. This process involves the removal of rafts from sites that are not interacting with the substrate, apparently through endocytosis, and a local accumulation at sites of integrin-mediated substrate interactions. PtdIns(4,5)P2-rich lipid rafts can assemble into patches in a process depending on PtdIns(4,5)P2, Cdc42 (cell-division control 42), N-WASP (neural Wiskott-Aldrich syndrome protein) and actin cytoskeleton dynamics. The raft patches are sites of signal-induced actin assembly, and their accumulation locally promotes sustained motility. The patches capture microtubules, which promote patch clustering through PKA (protein kinase A), to steer motility. Raft accumulation at the cell surface, and its coupling to motility are influenced greatly by the expression of intrinsic raft-associated components that associate with the cytosolic leaflet of lipid rafts. Among them, GAP43 (growth-associated protein 43)-like proteins interact with PtdIns(4,5)P2 in a Ca2+/calmodulin and PKC (protein kinase C)-regulated manner, and function as intrinsic determinants of motility and anatomical plasticity. Plasmalemmal PtdIns(4,5)P2-rich raft assemblies thus provide powerful organizational principles for tight spatial and temporal control of signalling in motility.


Blood ◽  
1996 ◽  
Vol 88 (2) ◽  
pp. 542-551 ◽  
Author(s):  
AA Higazi ◽  
RH Upson ◽  
RL Cohen ◽  
J Manuppello ◽  
J Bognacki ◽  
...  

Binding of urokinase-type plasminogen activator (uPA) to its glycosylphosphatidylinositol-anchored receptor (uPAR) initiates signal transduction, adhesion, and migration in certain cell types. To determine whether some of these activities may be mediated by associations between the uPA/uPAR complex and other cell surface proteins, we studied the binding of complexes composed of recombinant, soluble uPA receptor (suPAR) and single chain uPA (scuPA) to a cell line (LM-TK- fibroblasts) that does not express glycosylphosphatidylinositol (GPI)-anchored proteins to eliminate potential competition by endogenous uPA receptors. scuPA induced the binding of suPAR to LM-TK- cells. Binding of labeled suPAR/scuPA was inhibited by unlabeled complex, but not by scuPA or suPAR added separately, indicating cellular binding sites had been formed that are not present in either component. Binding of the complex was inhibited by low molecular weight uPA (LMW-uPA) indicating exposure of an epitope found normally in the isolated B chain of two chain uPA (tcuPA), but hidden in soluble scuPA. Binding of LMW-uPA was independent of its catalytic site and was associated with retention of its enzymatic activity. Additional cell binding epitopes were generated within suPAR itself by the aminoterminal fragment of scuPA, which itself does not bind to LM-TK- cells. When scuPA bound to suPAR, a binding site for alpha 2-macroglobulin receptor/LDL receptor-related protein (alpha 2 MR/LRP) was lost, while binding sites for cell-associated vitronectin and thrombospondin were induced. In accord with this, the internalization and degradation of cell-associated tcuPA and tcuPA-PAI- 1 complexes proceeded less efficiently in the presence of suPAR. Further, little degradation of suPAR was detected, suggesting that cell- bound complex dissociated during the initial stages of endocytosis. Thus, the interaction of scuPA with its receptor causes multiple functional changes within the complex including the dis-appearance of an epitope in scuPA involved in its clearance from the cell surface and the generation of novel epitopes that promote its binding to proteins involved in cell adhesion and signal transduction.


1994 ◽  
Vol 127 (3) ◽  
pp. 707-723 ◽  
Author(s):  
K A Beck ◽  
J A Buchanan ◽  
V Malhotra ◽  
W J Nelson

Spectrin is a major component of a membrane-associated cytoskeleton involved in the maintenance of membrane structural integrity and the generation of functionally distinct membrane protein domains. Here, we show that a homolog of erythrocyte beta-spectrin (beta I sigma*) co-localizes with markers of the Golgi complex in a variety of cell types, and that microinjected beta-spectrin codistributes with elements of the Golgi complex. Significantly, we show a dynamic relationship between beta-spectrin and the structural and functional organization of the Golgi complex. Disruption of both Golgi structure and function, either in mitotic cells or following addition of brefeldin A, is accompanied by loss of beta-spectrin from Golgi membranes and dispersal in the cytoplasm. In contrast, perturbation of Golgi structure without a loss of function, by the addition of nocodazole, results in retention of beta-spectrin with the dispersed Golgi elements. These results indicate that the association of beta-spectrin with Golgi membranes is coupled to Golgi organization and function.


2014 ◽  
Vol 89 (3) ◽  
pp. 1851-1866 ◽  
Author(s):  
Izabela Rasmussen ◽  
Frederik Vilhardt

ABSTRACTThe entry mechanism of murine amphotropic retrovirus (A-MLV) has not been unambiguously determined. We show here that A-MLV is internalized not by caveolae or other pinocytic mechanisms but by macropinocytosis. Thus, A-MLV infection of mouse embryonic fibroblasts deficient for caveolin or dynamin, and NIH 3T3 cells knocked down for caveolin expression, was unaffected. Conversely, A-MLV infection of NIH 3T3 and HeLa cells was sensitive to amiloride analogues and actin-depolymerizing drugs that interfere with macropinocytosis. Further manipulation of the actin cytoskeleton through conditional expression of dominant positive or negative mutants of Rac1, PAK1, and RhoG, to increase or decrease macropinocytosis, similarly correlated with an augmented or inhibited infection with A-MLV, respectively. The same experimental perturbations affected the infection of viruses that use clathrin-coated-pit endocytosis or other pathways for entry only mildly or not at all. These data agree with immunofluorescence studies and cryo-immunogold labeling for electron microscopy, which demonstrate the presence of A-MLV in protrusion-rich areas of the cell surface and in cortical fluid phase (dextran)-filled macropinosomes, which also account for up to a half of the cellular uptake of the cell surface-binding lectin concanavalin A. We conclude that A-MLV use macropinocytosis as the predominant entry portal into cells.IMPORTANCEBinding and entry of virus particles into mammalian cells are the first steps of infection. Understanding how pathogens and toxins exploit or divert endocytosis pathways has advanced our understanding of membrane trafficking pathways, which benefits development of new therapeutic schemes and methods of drug delivery. We show here that amphotropic murine leukemia virus (A-MLV) pseudotyped with the amphotropic envelope protein (which expands the host range to many mammalian cells) gains entry into host cells by macropinocytosis. Macropinosomes form as large, fluid-filled vacuoles (up to 10 μm) following the collapse of cell surface protrusions and membrane scission. We used drugs or the introduction of mutant proteins that affect the actin cytoskeleton and cell surface dynamics to show that macropinocytosis and A-MLV infection are correlated, and we provide both light- and electron-microscopic evidence to show the localization of A-MLV in macropinosomes. Finally, we specifically exclude some other potential entry portals, including caveolae, previously suggested to internalize A-MLV.


2011 ◽  
Vol 2 (1) ◽  
pp. 9
Author(s):  
Vaibhavi Jawahar Lad ◽  
Ashok Kumar Gupta

Japanese encephalitis virus (JEV) replicates in a variety of cells, the exact intracellular site of virus assembly is somewhat obscure. The aims of this study were to investigate the role Golgi apparatus in JEV maturation by utilizing two Golgi-disrupting agents- brefeldin A (BFA) and monensin (MN) that inhibit virus assembly at specific cellular sites. JEV-infected porcine kidney stable (PS) cells were treated with BFA (2 ug/ mL) or MN (10 uM/ mL) at different h post-infection (p. i.) and the virus contents were assayed after 48 h p. i. The treated cells were further subjected to immuno-fluorescence (IF) using antibodies directed against JEV envelope glycoprotein (gpE) for localization of intracellular viral antigen as well as the antigen expression on the cell surface. Addition of BFA or MN to cells immediately after virus adsorption or at 4 h and 12 h postinfection (p. i.), resulted in 4- or 8- fold reduction in infectious virus contents along with inhibition of its transport to the cell surface, indicating an essential role of the Golgi-associated membranes in JEV replication. Interestingly, the antigenicity of the virus, in contrast, remained unaffected as no difference in epitope presentation/ expression was observed in BFA/MN-treated and control (untreated) infected cells even though in the former cells a loss of hemagglutinating (HA) activity was observed. Further, BFA addition at 18 h or 24 h p. i. showed only a negligible effect on virus suggesting that once the viral-associated membranes are formed, these membranes appear to be stable. In contrast, the inhibition with MN persisted even after its addition to cells at 18 h and 24 h p. i., indicating its sustained effect on JEV. Although BFA inhibits protein transport from endoplasmic reticulum (ER) to the Golgi complex while MN inhibits transport from medial to trans cisternae of the Golgi complex, none of the two agents however affected the gpE synthesis and folding essentially required for the epitope presentation/expression within the cells. As flaviviruses are known to encode three glycoproteins (gps) within their genomes i. e., prM, E, and NS, it will be worthwhile in future to determine whether vesicular transport occurs within or between the virus-induced membranes and how the individual JEV-encoded proteins are transported to discrete compartments further remain to be seen.


Author(s):  
Gonpachiro Yasuzumi ◽  
Toshikatsu Asai

Receptor-specific proteins are now being widely and usefully applied to the study of cell-surface topography. We have been actively interested in this field from the standpoint of spermiogenesis of the grasshopper. The surface of developing spermatids is in contact with other cells or with their environment, and in addition to carrying on metabolic processes necessary for maturation they must also exhibit the specificity that distinguishes cells from the same cell types from different individuales. The cell bodies of the grasshopper, Acrida lata Motschulsky, spermatids are spherical in the early stage of metamorphosis, but later they become conical and more and more elongate until they are long slender rods, rounded at the base and tapering at the tip to a sharp point. Concurrently with these changes in the spermatid cell bodies, the remarkable trans formation occurs in the fine structure of the cell-surface. In the early stage of maturation of spermatids, the cell-surface is smooth and consists of the unit membrane structure.


1998 ◽  
Vol 142 (6) ◽  
pp. 1501-1517 ◽  
Author(s):  
Tatiana S. Karpova ◽  
James G. McNally ◽  
Samuel L. Moltz ◽  
John A. Cooper

Actin in eukaryotic cells is found in different pools, with filaments being organized into a variety of supramolecular assemblies. To investigate the assembly and functional relationships between different parts of the actin cytoskeleton in one cell, we studied the morphology and dynamics of cables and patches in yeast. The fine structure of actin cables and the manner in which cables disassemble support a model in which cables are composed of a number of overlapping actin filaments. No evidence for intrinsic polarity of cables was found. To investigate to what extent different parts of the actin cytoskeleton depend on each other, we looked for relationships between cables and patches. Patches and cables were often associated, and their polarized distributions were highly correlated. Therefore, patches and cables do appear to depend on each other for assembly and function. Many cell types show rearrangements of the actin cytoskeleton, which can occur via assembly or movement of actin filaments. In our studies, dramatic changes in actin polarization did not include changes in filamentous actin. In addition, the concentration of actin patches was relatively constant as cells grew. Therefore, cells do not have bursts of activity in which new parts of the actin cytoskeleton are created.


2021 ◽  
Vol 7 (20) ◽  
pp. eabg0147
Author(s):  
Shannon K. Rich ◽  
Raju Baskar ◽  
Jonathan R. Terman

The F-actin cytoskeleton drives cellular form and function. However, how F-actin-based changes occur with spatiotemporal precision and specific directional orientation is poorly understood. Here, we identify that the unconventional class XV myosin [Myosin 15 (Myo15)] physically and functionally interacts with the F-actin disassembly enzyme Mical to spatiotemporally position cellular breakdown and reconstruction. Specifically, while unconventional myosins have been associated with transporting cargo along F-actin to spatially target cytoskeletal assembly, we now find they also target disassembly. Myo15 specifically positions this F-actin disassembly by associating with Mical and using its motor and MyTH4-FERM cargo-transporting functions to broaden Mical’s distribution. Myo15’s broadening of Mical’s distribution also expands and directionally orients Mical-mediated F-actin disassembly and subsequent cellular remodeling, including in response to Semaphorin/Plexin cell surface activation signals. Thus, we identify a mechanism that spatiotemporally propagates F-actin disassembly while also proposing that other F-actin-trafficked-cargo is derailed by this disassembly to directionally orient rebuilding.


2021 ◽  
Vol 22 (19) ◽  
pp. 10366
Author(s):  
Filip Vasilev ◽  
Yulia Ezhova ◽  
Jong Tai Chun

A cell should deal with the changing external environment or the neighboring cells. Inevitably, the cell surface receives and transduces a number of signals to produce apt responses. Typically, cell surface receptors are activated, and during this process, the subplasmalemmal actin cytoskeleton is often rearranged. An intriguing point is that some signaling enzymes and ion channels are physically associated with the actin cytoskeleton, raising the possibility that the subtle changes of the local actin cytoskeleton can, in turn, modulate the activities of these proteins. In this study, we reviewed the early and new experimental evidence supporting the notion of actin-regulated enzyme and ion channel activities in various cell types including the cells of immune response, neurons, oocytes, hepatocytes, and epithelial cells, with a special emphasis on the Ca2+ signaling pathway that depends on the synthesis of inositol 1,4,5-trisphosphate. Some of the features that are commonly found in diverse cells from a wide spectrum of the animal species suggest that fine-tuning of the activities of the enzymes and ion channels by the actin cytoskeleton may be an important strategy to inhibit or enhance the function of these signaling proteins.


2013 ◽  
Vol 202 (2) ◽  
pp. 241-250 ◽  
Author(s):  
Yuichi Wakana ◽  
Julien Villeneuve ◽  
Josse van Galen ◽  
David Cruz-Garcia ◽  
Mitsuo Tagaya ◽  
...  

Here we report that the kinesin-5 motor Klp61F, which is known for its role in bipolar spindle formation in mitosis, is required for protein transport from the Golgi complex to the cell surface in Drosophila S2 cells. Disrupting the function of its mammalian orthologue, Eg5, in HeLa cells inhibited secretion of a protein called pancreatic adenocarcinoma up-regulated factor (PAUF) but, surprisingly, not the trafficking of vesicular stomatitis virus G protein (VSV-G) to the cell surface. We have previously reported that PAUF is transported from the trans-Golgi network (TGN) to the cell surface in specific carriers called CARTS that exclude VSV-G. Inhibition of Eg5 function did not affect the biogenesis of CARTS; however, their migration was delayed and they accumulated near the Golgi complex. Altogether, our findings reveal a surprising new role of Eg5 in nonmitotic cells in the facilitation of the transport of specific carriers, CARTS, from the TGN to the cell surface.


Sign in / Sign up

Export Citation Format

Share Document