p39 activates cdk5 in neurons, and is associated with the actin cytoskeleton

2000 ◽  
Vol 113 (6) ◽  
pp. 975-983 ◽  
Author(s):  
S. Humbert ◽  
R. Dhavan ◽  
L. Tsai

Cyclin-dependent kinase 5 (cdk5) is a small serine/threonine kinase that displays close sequence homology to the mitotically active cyclin-dependent kinases. Cdk5 has been shown to play an essential role in the development of the nervous system, including neuronal migration and neurite outgrowth. Cdk5 activation requires the presence of a regulatory activator such as p35. cdk5 -/- mice have much more extensive defects in the development of the nervous system than p35 -/- mice, leading to the speculation that other regulatory activators of cdk5 exist. Indeed, p39 is a p35 related protein isolated by sequence homology to p35. We show here that p39 associates with cdk5 in brain lysates, and that this complex is active in phosphorylation of histone H1. By extensive characterization of p39 subcellular localization in different cell types, we demonstrate the presence of p39 in lamellipodial and fillopodial structures of cells and in growth cones of neurons. We show that p39 colocalizes with actin, and cofractionates with the detergent insoluble cytoskeleton from brain. Further, p39 coimmunoprecipitates with actin in brain lysates. Finally, disruption of the actin cytoskeleton alters p39 subcellular localization as well as kinase activity of the p39/cdk5 complex. Therefore, our results reveal the existence of the p39/cdk5 complex in vivo and suggest that it might play a role in regulating actin cytoskeletal dynamics in cells.

2021 ◽  
Vol 22 (5) ◽  
pp. 2484
Author(s):  
David Gonzalez ◽  
Miguel L. Allende

Following an injury, axons of both the central nervous system (CNS) and peripheral nervous system (PNS) degenerate through a coordinated and genetically conserved mechanism known as Wallerian degeneration (WD). Unlike central axons, severed peripheral axons have a higher capacity to regenerate and reinnervate their original targets, mainly because of the favorable environment that they inhabit and the presence of different cell types. Even though many aspects of regeneration in peripheral nerves have been studied, there is still a lack of understanding regarding the dynamics of axonal degeneration and regeneration, mostly due to the inherent limitations of most animal models. In this scenario, the use of zebrafish (Danio rerio) larvae combined with time-lapse microscopy currently offers a unique experimental opportunity to monitor the dynamics of the regenerative process in the PNS in vivo. This review summarizes the current knowledge and advances made in understanding the dynamics of the regenerative process of PNS axons. By using different tools available in zebrafish such as electroablation of the posterior lateral line nerve (pLLn), and laser-mediated transection of motor and sensory axons followed by time-lapse microscopy, researchers are beginning to unravel the complexity of the spatiotemporal interactions among different cell types during the regenerative process. Thus, understanding the cellular and molecular mechanisms underlying the degeneration and regeneration of peripheral nerves will open new avenues in the treatment of acute nerve trauma or chronic conditions such as neurodegenerative diseases.


2001 ◽  
Vol 193 (4) ◽  
pp. 545-550 ◽  
Author(s):  
Yunbiao Lu ◽  
Lisa Parkyn ◽  
Leo E. Otterbein ◽  
Yasuko Kureishi ◽  
Kenneth Walsh ◽  
...  

Oxidant-induced injury to the lung causes extensive damage to lung epithelial cells. Impaired protection and repair of the lung epithelium can result in death. The serine-threonine kinase Akt has been implicated in inhibiting cell death induced by different stimuli including growth factor withdrawal, cell cycle discordance, DNA damage, and loss of cell adhesion in different cell types. However, the in vivo relevance of this prosurvival pathway has not been explored. Here we show that a constitutively active form of Akt introduced intratracheally into the lungs of mice by adenovirus gene transfer techniques protects mice from hyperoxic pulmonary damage and delays death of mice. This is the first demonstration of the in vivo protective function of Akt in the context of oxidant-induced lung injury.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3389
Author(s):  
Ishtiaq Ahmed ◽  
Saif Ur Rehman ◽  
Shiva Shahmohamadnejad ◽  
Muhammad Anjum Zia ◽  
Muhammad Ahmad ◽  
...  

In humans, various sites like cannabinoid receptors (CBR) having a binding affinity with cannabinoids are distributed on the surface of different cell types, where endocannabinoids (ECs) and derivatives of fatty acid can bind. The binding of these substance(s) triggers the activation of specific receptors required for various physiological functions, including pain sensation, memory, and appetite. The ECs and CBR perform multiple functions via the cannabinoid receptor 1 (CB1); cannabinoid receptor 2 (CB2), having a key effect in restraining neurotransmitters and the arrangement of cytokines. The role of cannabinoids in the immune system is illustrated because of their immunosuppressive characteristics. These characteristics include inhibition of leucocyte proliferation, T cells apoptosis, and induction of macrophages along with reduced pro-inflammatory cytokines secretion. The review seeks to discuss the functional relationship between the endocannabinoid system (ECS) and anti-tumor characteristics of cannabinoids in various cancers. The therapeutic potential of cannabinoids for cancer—both in vivo and in vitro clinical trials—has also been highlighted and reported to be effective in mice models in arthritis for the inflammation reduction, neuropathic pain, positive effect in multiple sclerosis and type-1 diabetes mellitus, and found beneficial for treating in various cancers. In human models, such studies are limited; thereby, further research is indispensable in this field to get a conclusive outcome. Therefore, in autoimmune disorders, therapeutic cannabinoids can serve as promising immunosuppressive and anti-fibrotic agents.


Endocrinology ◽  
2012 ◽  
Vol 153 (12) ◽  
pp. 5888-5895 ◽  
Author(s):  
Paola Catanuto ◽  
Alessia Fornoni ◽  
Simone Pereira-Simon ◽  
Fayi Wu ◽  
Kerry L. Burnstein ◽  
...  

Abstract We recently showed that 17β-estradiol (E2) treatment ameliorated type 2 diabetic glomerulosclerosis in mice in part by protecting podocyte structure and function. Progressive podocyte damage is characterized by foot process effacement, vacuolization, detachment of podocytes from the glomerular basement membrane, and apoptosis. In addition, podocytes are highly dependent on the preservation of their actin cytoskeleton to ensure proper function and survival. Because E2 administration prevented podocyte damage in our study on diabetic db/db mice and has been shown to regulate both actin cytoskeleton and apoptosis in other cell types and tissues, we investigated whether actin remodeling and apoptosis were prevented in podocytes isolated from E2-treated diabetic db/db mice. We performed G-actin/F-actin assays, Western analysis for Hsp25 expression, Ras-related C3 botulinum toxin substrate 1 (Rac1) activity, and apoptosis assays on previously characterized podocytes isolated from both in vivo-treated placebo and E2 female db/db mice. We found that in vivo E2 protects against a phenotype change in the cultured podocytes characterized by a percent increase of F-actin vs. G-actin, suppression of Hsp25 expression and transcriptional activation, increase of Rac1 activity, and decreased apoptotic intermediates. We conclude from these studies that E2 treatment protects against podocyte damage and may prevent/reduce diabetes-induced kidney disease.


RMD Open ◽  
2018 ◽  
Vol 4 (2) ◽  
pp. e000744 ◽  
Author(s):  
Kerstin Klein

The reading of acetylation marks on histones by bromodomain (BRD) proteins is a key event in transcriptional activation. Small molecule inhibitors targeting bromodomain and extra-terminal (BET) proteins compete for binding to acetylated histones. They have strong anti-inflammatory properties and exhibit encouraging effects in different cell types in vitro and in animal models resembling rheumatic diseases in vivo. Furthermore, recent studies that focus on BRD proteins beyond BET family members are discussed.


2017 ◽  
Vol 216 (10) ◽  
pp. 3405-3422 ◽  
Author(s):  
Vasja Urbančič ◽  
Richard Butler ◽  
Benjamin Richier ◽  
Manuel Peter ◽  
Julia Mason ◽  
...  

Filopodia have important sensory and mechanical roles in motile cells. The recruitment of actin regulators, such as ENA/VASP proteins, to sites of protrusion underlies diverse molecular mechanisms of filopodia formation and extension. We developed Filopodyan (filopodia dynamics analysis) in Fiji and R to measure fluorescence in filopodia and at their tips and bases concurrently with their morphological and dynamic properties. Filopodyan supports high-throughput phenotype characterization as well as detailed interactive editing of filopodia reconstructions through an intuitive graphical user interface. Our highly customizable pipeline is widely applicable, capable of detecting filopodia in four different cell types in vitro and in vivo. We use Filopodyan to quantify the recruitment of ENA and VASP preceding filopodia formation in neuronal growth cones, and uncover a molecular heterogeneity whereby different filopodia display markedly different responses to changes in the accumulation of ENA and VASP fluorescence in their tips over time.


2013 ◽  
Vol 33 (7) ◽  
pp. 1115-1126 ◽  
Author(s):  
Basavaraju G Sanganahalli ◽  
Peter Herman ◽  
Fahmeed Hyder ◽  
Sridhar S Kannurpatti

Local calcium (Ca2 +) changes regulate central nervous system metabolism and communication integrated by subcellular processes including mitochondrial Ca2 + uptake. Mitochondria take up Ca2 + through the calcium uniporter (mCU) aided by cytoplasmic microdomains of high Ca2 +. Known only in vitro, the in vivo impact of mCU activity may reveal Ca2 + -mediated roles of mitochondria in brain signaling and metabolism. From in vitro studies of mitochondrial Ca2 + sequestration and cycling in various cell types of the central nervous system, we evaluated ranges of spontaneous and activity-induced Ca2 + distributions in multiple subcellular compartments in vivo. We hypothesized that inhibiting (or enhancing) mCU activity would attenuate (or augment) cortical neuronal activity as well as activity-induced hemodynamic responses in an overall cytoplasmic and mitochondrial Ca2 + -dependent manner. Spontaneous and sensory-evoked cortical activities were measured by extracellular electrophysiology complemented with dynamic mapping of blood oxygen level dependence and cerebral blood flow. Calcium uniporter activity was inhibited and enhanced pharmacologically, and its impact on the multimodal measures were analyzed in an integrated manner. Ru360, an mCU inhibitor, reduced all stimulus-evoked responses, whereas Kaempferol, an mCU enhancer, augmented all evoked responses. Collectively, the results confirm aforementioned hypotheses and support the Ca2 + uptake-mediated integrative role of in vivo mitochondria on neocortical activity.


‘Neuroanatomy and neurophysiology’ covers the anatomy and organization of the central nervous system, including the skull and cervical vertebrae, the meninges, the blood and lymphatic vessels, muscles and nerves of the head and neck, and the structures of the eye, ear, and central nervous system. At a cellular level, the different cell types and the mechanism of transmission across synapses are considered, including excitatory and inhibitory synapses. This is followed by a review of the major control and sensory systems (including movement, information processing, locomotion, reflexes, and the main five senses of sight, hearing, touch, taste, and smell). The integration of these processes into higher functions (such as sleep, consciousness and coma, emotion, memory, and ageing) is discussed, along with the causes and treatments of disorders of diseases such as depression, schizophrenia, epilepsy, addiction, and degenerative diseases.


2020 ◽  
Vol 11 ◽  
pp. 101-123 ◽  
Author(s):  
Ivana Ruseska ◽  
Andreas Zimmer

In today’s modern era of medicine, macromolecular compounds such as proteins, peptides and nucleic acids are dethroning small molecules as leading therapeutics. Given their immense potential, they are highly sought after. However, their application is limited mostly due to their poor in vivo stability, limited cellular uptake and insufficient target specificity. Cell-penetrating peptides (CPPs) represent a major breakthrough for the transport of macromolecules. They have been shown to successfully deliver proteins, peptides, siRNAs and pDNA in different cell types. In general, CPPs are basic peptides with a positive charge at physiological pH. They are able to translocate membranes and gain entry to the cell interior. Nevertheless, the mechanism they use to enter cells still remains an unsolved piece of the puzzle. Endocytosis and direct penetration have been suggested as the two major mechanisms used for internalization, however, it is not all black and white in the nanoworld. Studies have shown that several CPPs are able to induce and shift between different uptake mechanisms depending on their concentration, cargo or the cell line used. This review will focus on the major internalization pathways CPPs exploit, their characteristics and regulation, as well as some of the factors that influence the cellular uptake mechanism.


Sign in / Sign up

Export Citation Format

Share Document