scholarly journals XMog1, a nuclear Ran-binding protein in Xenopus, is a functional homologue of Schizosaccharomyces pombe Mog1p that co-operates with RanBP1 to control generation of Ran-GTP

2001 ◽  
Vol 114 (16) ◽  
pp. 3013-3023 ◽  
Author(s):  
Francisco J. Nicolás ◽  
William J. Moore ◽  
Chuanmao Zhang ◽  
Paul R. Clarke

Ran is a multifunctional small GTPase of the Ras superfamily that plays roles in nucleocytoplasmic transport, mitotic spindle assembly and nuclear envelope formation. By screening a Xenopus oocyte cDNA library for Ran-GTP-binding proteins using the two-hybrid system of co-expression in yeast, we identified XMog1, a 20.4 kDa polypeptide related to Mog1p in Saccharomyces cerevisiae and similar gene products in Schizosaccharomyces pombe, Arabidopsis and mammals. We show that cDNAs encoding XMog1 and S. cerevisiae Mog1p rescue the growth defect of S. pombe cells lacking mog1, demonstrating conservation of their functions. In Xenopus somatic cells and transfected mammalian cells, XMog1 is localised to the nucleus. XMog1 alone does not stimulate Ran GTPase activity or nucleotide exchange, but causes nucleotide release from Ran-GTP and forms a complex with nucleotide-free Ran. However, in combination with Ran-binding protein 1 (RanBP1), XMog1 promotes the release of GDP and the selective binding of GTP to Ran. XMog1 and RanBP1 also promote selective GTP loading onto Ran catalysed by the nuclear guanine nucleotide exchange factor, RCC1. We propose that Mog1-related proteins, together with RanBP1, facilitate the generation of Ran-GTP from Ran-GDP in the nucleus.

2009 ◽  
Vol 20 (12) ◽  
pp. 2900-2908 ◽  
Author(s):  
Kanako Tamura ◽  
Norihiko Ohbayashi ◽  
Yuto Maruta ◽  
Eiko Kanno ◽  
Takashi Itoh ◽  
...  

Two small GTPase Rabs, Rab32 and Rab38, have recently been proposed to regulate trafficking of melanogenic enzymes to melanosomes in mammalian epidermal melanocytes; however, the exact molecular mechanism of Rab32/38-mediated transport of melanogenic enzymes has never been clarified, because no Rab32/38-specific effector has ever been identified. In this study, we screened for a Rab32/38-specific effector by a yeast two-hybrid assay using a guanosine triphosphate (GTP)-locked Rab32/38 as bait and found that VPS9-ankyrin-repeat protein (Varp)/Ankrd27, characterized previously as a guanine nucleotide exchange factor (GEF) for Rab21, functions as a specific Rab32/38-binding protein in mouse melanocyte cell line melan-a. Deletion analysis showed that the first ankyrin-repeat (ANKR1) domain functions as a GTP-dependent Rab32/38-binding domain, but that the N-terminal VPS9 domain (i.e., Rab21-GEF domain) does not. Small interfering RNA-mediated knockdown of endogenous Varp in melan-a cells caused a dramatic reduction in Tyrp1 (tyrosinase-related protein 1) signals from melanosomes but did not cause any reduction in Pmel17 signals. Furthermore, expression of the ANKR1 domain in melan-a cells also caused a dramatic reduction of Tyrp1 signals, whereas the VPS9 domain had no effect. Based on these findings, we propose that Varp functions as the Rab32/38 effector that controls trafficking of Tyrp1 in melanocytes.


1995 ◽  
Vol 15 (8) ◽  
pp. 4578-4584 ◽  
Author(s):  
S B Cantor ◽  
T Urano ◽  
L A Feig

Ral proteins constitute a distinct family of Ras-related GTPases. Although similar to Ras in amino acid sequence, Ral proteins are activated by a unique nucleotide exchange factor and inactivated by a distinct GTPase-activating protein. Unlike Ras, they fail to promote transformed foci when activated versions are expressed in cells. To identify downstream targets that might mediate a Ral-specific function, we used a Saccharomyces cerevisiae-based interaction assay to clone a novel cDNA that encodes a Ral-binding protein (RalBP1). RalBP1 binds specifically to the active GTP-bound form of RalA and not to a mutant Ral with a point mutation in its putative effector domain. In addition to a Ral-binding domain, RalBP1 also contains a Rho-GTPase-activating protein domain that interacts preferentially with Rho family member CDC42. Since CDC42 has been implicated in bud site selection in S. cerevisiae and filopodium formation in mammalian cells, Ral may function to modulate the actin cytoskeleton through its interactions with RalBP1.


Genetics ◽  
2000 ◽  
Vol 154 (1) ◽  
pp. 155-165 ◽  
Author(s):  
Janet M Murray ◽  
Douglas I Johnson

Abstract The Cdc42p GTPase and its regulators, such as the Saccharomyces cerevisiae Cdc24p guanine-nucleotide exchange factor, control signal-transduction pathways in eukaryotic cells leading to actin rearrangements. A cross-species genetic screen was initiated based on the ability of negative regulators of Cdc42p to reverse the Schizosaccharomyces pombe Cdc42p suppression of a S. cerevisiae cdc24ts mutant. A total of 32 S. pombe nrf (negative regulator of Cdc forty two) cDNAs were isolated that reversed the suppression. One cDNA, nrf1+, encoded an ~15 kD protein with three potential transmembrane domains and 78% amino-acid identity to a S. cerevisiae gene, designated NRF1. A S. pombe Δnrf1 mutant was viable but overexpression of nrf1+ in S. pombe resulted in dose-dependent lethality, with cells exhibiting an ellipsoidal morphology indicative of loss of polarized cell growth along with partially delocalized cortical actin and large vacuoles. nrf1+ also displayed synthetic overdose phenotypes with cdc42 and pak1 alleles. Green fluorescent protein (GFP)-Cdc42p and GFP-Nrf1p colocalized to intracellular membranes, including vacuolar membranes, and to sites of septum formation during cytokinesis. GFP-Nrf1p vacuolar localization depended on the S. pombe Cdc24p homolog Scd1p. Taken together, these data are consistent with Nrf1p functioning as a negative regulator of Cdc42p within the cell polarity pathway.


Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2089 ◽  
Author(s):  
Iker Lamas ◽  
Nathalie Weber ◽  
Sophie G. Martin

The small GTPase Cdc42 is critical for cell polarization in eukaryotic cells. In rod-shaped fission yeast Schizosaccharomyces pombe cells, active GTP-bound Cdc42 promotes polarized growth at cell poles, while inactive Cdc42-GDP localizes ubiquitously also along cell sides. Zones of Cdc42 activity are maintained by positive feedback amplification involving the formation of a complex between Cdc42-GTP, the scaffold Scd2, and the guanine nucleotide exchange factor (GEF) Scd1, which promotes the activation of more Cdc42. Here, we use the CRY2-CIB1 optogenetic system to recruit and cluster a cytosolic Cdc42 variant at the plasma membrane and show that this leads to its moderate activation also on cell sides. Surprisingly, Scd2, which binds Cdc42-GTP, is still recruited to CRY2-Cdc42 clusters at cell sides in individual deletion of the GEFs Scd1 or Gef1. We show that activated Cdc42 clusters at cell sides are able to recruit Scd1, dependent on the scaffold Scd2. However, Cdc42 activity is not amplified by positive feedback and does not lead to morphogenetic changes, due to antagonistic activity of the GTPase activating protein Rga4. Thus, the cell architecture is robust to moderate activation of Cdc42 at cell sides.


2008 ◽  
Vol 19 (7) ◽  
pp. 2718-2728 ◽  
Author(s):  
Irfan J. Lodhi ◽  
Dave Bridges ◽  
Shian-Huey Chiang ◽  
Yanling Zhang ◽  
Alan Cheng ◽  
...  

Phosphatidylinositol 3-phosphate (PI(3)P) plays an important role in insulin-stimulated glucose uptake. Insulin promotes the production of PI(3)P at the plasma membrane by a process dependent on TC10 activation. Here, we report that insulin-stimulated PI(3)P production requires the activation of Rab5, a small GTPase that plays a critical role in phosphoinositide synthesis and turnover. This activation occurs at the plasma membrane and is downstream of TC10. TC10 stimulates Rab5 activity via the recruitment of GAPEX-5, a VPS9 domain–containing guanyl nucleotide exchange factor that forms a complex with TC10. Although overexpression of plasma membrane-localized GAPEX-5 or constitutively active Rab5 promotes PI(3)P formation, knockdown of GAPEX-5 or overexpression of a dominant negative Rab5 mutant blocks the effects of insulin or TC10 on this process. Concomitant with its effect on PI(3)P levels, the knockdown of GAPEX-5 blocks insulin-stimulated Glut4 translocation and glucose uptake. Together, these studies suggest that the TC10/GAPEX-5/Rab5 axis mediates insulin-stimulated production of PI(3)P, which regulates trafficking of Glut4 vesicles.


2020 ◽  
Vol 21 (3) ◽  
pp. 823 ◽  
Author(s):  
Daniel Becsky ◽  
Szuzina Gyulai-Nagy ◽  
Arpad Balind ◽  
Peter Horvath ◽  
Laszlo Dux ◽  
...  

Skeletal muscle is constantly renewed in response to injury, exercise, or muscle diseases. Muscle stem cells, also known as satellite cells, are stimulated by local damage to proliferate extensively and form myoblasts that then migrate, differentiate, and fuse to form muscle fibers. The transmembrane heparan sulfate proteoglycan syndecan-4 plays multiple roles in signal transduction processes, such as regulating the activity of the small GTPase Rac1 (Ras-related C3 botulinum toxin substrate 1) by binding and inhibiting the activity of Tiam1 (T-lymphoma invasion and metastasis-1), a guanine nucleotide exchange factor for Rac1. The Rac1-mediated actin remodeling is required for cell migration. Syndecan-4 knockout mice cannot regenerate injured muscle; however, the detailed underlying mechanism is unknown. Here, we demonstrate that shRNA-mediated knockdown of syndecan-4 decreases the random migration of mouse myoblasts during live-cell microscopy. Treatment with the Rac1 inhibitor NSC23766 did not restore the migration capacity of syndecan-4 silenced cells; in fact, it was further reduced. Syndecan-4 knockdown decreased the directional persistence of migration, abrogated the polarized, asymmetric distribution of Tiam1, and reduced the total Tiam1 level of the cells. Syndecan-4 affects myoblast migration via its role in expression and localization of Tiam1; this finding may facilitate greater understanding of the essential role of syndecan-4 in the development and regeneration of skeletal muscle.


2011 ◽  
Vol 22 (23) ◽  
pp. 4539-4548 ◽  
Author(s):  
Shuling Fan ◽  
Eileen L. Whiteman ◽  
Toby W. Hurd ◽  
Jeremy C. McIntyre ◽  
John F. Dishinger ◽  
...  

The small GTPase Ran and the importin proteins regulate nucleocytoplasmic transport. New evidence suggests that Ran GTP and the importins are also involved in conveying proteins into cilia. In this study, we find that Ran GTP accumulation at the basal bodies is coordinated with the initiation of ciliogenesis. The Ran-binding protein 1 (RanBP1), which indirectly accelerates Ran GTP → Ran GDP hydrolysis and promotes the dissociation of the Ran/importin complex, also localizes to basal bodies and cilia. To confirm the crucial link between Ran GTP and ciliogenesis, we manipulated the levels of RanBP1 and determined the effects on Ran GTP and primary cilia formation. We discovered that RanBP1 knockdown results in an increased concentration of Ran GTP at basal bodies, leading to ciliogenesis. In contrast, overexpression of RanBP1 antagonizes primary cilia formation. Furthermore, we demonstrate that RanBP1 knockdown disrupts the proper localization of KIF17, a kinesin-2 motor, at the distal tips of primary cilia in Madin–Darby canine kidney cells. Our studies illuminate a new function for Ran GTP in stimulating cilia formation and reinforce the notion that Ran GTP and the importins play key roles in ciliogenesis and ciliary protein transport.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1266-1266 ◽  
Author(s):  
Carla Carbo ◽  
Tobias Goerge ◽  
Hidenori Hattori ◽  
Daniel Duerschmied ◽  
Stephen M. Cifuni ◽  
...  

Abstract Neutrophil chemotaxis and transmigration towards a source of inflammation are two crucial processes for host defense against infection that rely on integrin function. Recently, integrin-independent migration of dendritic cells to the lymph node has been brought to light, although neutrophil migration in the presence of EDTA was reported many years ago. Ca2+ and diacylglycerol-regulated guanine nucleotide exchange factor I (CalDAG-GEFI), is a small signaling protein that plays a key role in the activation of beta-1, beta-2, and beta-3 integrins in platelets and neutrophils by activating the small GTPase Rap1. We explored the role of CalDAG-GEFI in integrin-independent chemotaxis in neutrophils. Here we report that CalDAG-GEFI−/− neutrophils have impaired chemotaxis that is independent of integrin function. In a chemotaxis transwell assay towards LTB4 and in the presence of 10mM EDTA, CalDAG-GEFI−/− neutrophils had a 50% reduction in transmigration over 60 minutes compared to wild-type (WT) neutrophils (p<0.05). In separate experiments we confirmed that the transwell assay is independent of integrins using either CD18−/− neutrophils or WT neutrophils plus a blocking anti-CD18 monoclonal antibody. We previously showed that LTB4 signaling upstream of CalDAG-GEFI was not affected in CalDAG-GEFI−/− neutrophils, as assessed by intracellular calcium flux measurements. Using videomicroscopy to visualize the live migrating neutrophils in a horizontal plate in the presence of 10mM EDTA, we found that the reason CalDAG-GEFI−/− neutrophils fail to reach the chemotactic stimulus (10 pg/mL LTB4) is because they have a significantly reduced migration speed compared to WT neutrophils (16 um/sec vs. 23 um/sec, p<0.05), and also because they have an abnormal chemotactic directionality, with a directionality index (the distance between the start and finish points of a migrating neutrophil/total distance covered by the migrating neutrophil) of 0.84 vs 0.94 in WT neutrophils, p<0.05. We investigated whether the observed differences in chemotaxis between CalDAG-GEFI−/− and WT neutrophils could be explained by differences in F-actin polymerization. Using fluorescence microscopy, we found that the percentage of CalDAG-GEFI−/− neutrophils with F-actin pseudopodia after LTB4 stimulation was significantly lower compared to WT neutrophils (22% vs. 56.7%, p<0.05), suggesting that CalDAG-GEFI−/− neutrophils have a defect in F-actin polymerization. Overall, our studies suggest that CalDAG-GEFI plays a role in the mechanisms that regulate both the migration speed and direction of neutrophils during chemotaxis, independent of its established role in integrin activation.


2008 ◽  
Vol 19 (1) ◽  
pp. 8-16 ◽  
Author(s):  
Masamitsu Kanada ◽  
Akira Nagasaki ◽  
Taro Q.P. Uyeda

Some mammalian cells are able to divide via both the classic contractile ring-dependent method (cytokinesis A) and a contractile ring-independent, adhesion-dependent method (cytokinesis B). Cytokinesis A is triggered by RhoA, which, in HeLa cells, is activated by the guanine nucleotide-exchange factor Ect2 localized at the central spindle and equatorial cortex. Here, we show that in HT1080 cells undergoing cytokinesis A, Ect2 does not localize in the equatorial cortex, though RhoA accumulates there. Moreover, Ect2 depletion resulted in only modest multinucleation of HT1080 cells, enabling us to establish cell lines in which Ect2 was constitutively depleted. Thus, RhoA is activated via an Ect2-independent pathway during cytokinesis A in HT1080 cells. During cytokinesis B, Ect2-depleted cells showed narrower accumulation of RhoA at the equatorial cortex, accompanied by compromised pole-to-equator polarity, formation of ectopic lamellipodia in regions where RhoA normally would be distributed, and delayed formation of polar lamellipodia. Furthermore, C3 exoenzyme inhibited equatorial RhoA activation and polar lamellipodia formation. Conversely, expression of dominant active Ect2 in interphase HT1080 cells enhanced RhoA activity and suppressed lamellipodia formation. These results suggest that equatorial Ect2 locally suppresses lamellipodia formation via RhoA activation, which indirectly contributes to restricting lamellipodia formation to polar regions during cytokinesis B.


Sign in / Sign up

Export Citation Format

Share Document