scholarly journals Smaug1 membrane-less organelles respond to AMPK/mTOR and affect mitochondrial function‡

2021 ◽  
Author(s):  
Ana J. Fernández-Alvarez ◽  
María Gabriela Thomas ◽  
Malena L. Pascual ◽  
Martín Habif ◽  
Jerónimo Pimentel ◽  
...  

Smaug is a conserved translational regulator that binds numerous mRNAs, including nuclear transcripts that encode mitochondrial enzymes. Smaug orthologs form cytosolic membrane-less organelles (MLOs) in several organisms and cell types. We have performed single-molecule FISH assays that revealed that SDHB and UQCRC1 mRNAs associate with Smaug1 bodies in U2OS cells. Loss of function of Smaug1 and Smaug2 affected both mitochondrial respiration and morphology of the mitochondrial network. Phenotype rescue by Smaug1 transfection depends on the presence of its RNA binding domain. Moreover, we identified specific Smaug1 domains involved in MLO formation, and found that impaired Smaug1 MLO condensation correlates with mitochondrial defects. Mitochondrial Complex I inhibition by rotenone –but not strong mitochondrial uncoupling by CCCP– rapidly induced Smaug1 MLOs dissolution. Metformin and rapamycin elicited similar effects, which were blocked by pharmacological inhibition of AMPK. Finally, we found that Smaug1 MLO dissolution weakens the interaction with target mRNAs, thus enabling their release. We propose that mitochondrial respiration and the AMPK/mTOR balance controls the condensation and dissolution of Smaug1 MLOs, thus regulating nuclear mRNAs that encode key mitochondrial proteins.

2020 ◽  
Author(s):  
Ana Julia Fernández-Alvarez ◽  
María Gabriela Thomas ◽  
Malena Lucía Pascual ◽  
Martín Habif ◽  
Jerónimo Pimentel ◽  
...  

Smaug is a conserved translational repressor that recognizes specific RNA motifs in a large number of mRNAs, including nuclear transcripts that encode mitochondrial enzymes. Smaug orthologs have been shown to form membraneless organelles (MLOs) in several organisms and cell types. Using single-molecule FISH we show here that SDHB and UQCRC1 mRNAs associate with Smaug1 MLOs in the human cell line U2OS. Simultaneous loss of function of Smaug1 and Smaug2 affects both mitochondrial respiration and mitochondrial network morphology. Deletion of specific Smaug1 protein regions resulted in impaired MLO formation that correlates with mitochondrial defects. In addition, rotenone but not the respiratory chain uncoupling agent CCCP rapidly induces Smaug1 MLO dissolution. Finally, metformin elicits a similar effect on Smaug1 MLOs and provokes the release of bounded mRNAs. We propose that mitochondrial activity affects Smaug1 MLO dynamics, thus allowing for regulation of nuclear mRNAs that encode key mitochondrial proteins.


2019 ◽  
Author(s):  
Andrea Loreto ◽  
Ciaran S. Hill ◽  
Victoria L. Hewitt ◽  
Giuseppe Orsomando ◽  
Carlo Angeletti ◽  
...  

ABSTRACTWallerian degeneration of physically injured axons involves a well-defined molecular pathway linking loss of axonal survival factor NMNAT2 to activation of pro-degenerative protein SARM1. Manipulating the pathway through these proteins led to the identification of non-axotomy insults causing axon degeneration by a Wallerian-like mechanism, including several involving mitochondrial impairment. Mitochondrial dysfunction is heavily implicated in Parkinson’s disease, Charcot-Marie-Tooth disease, hereditary spastic paraplegia and other axonal disorders. However, whether and how mitochondrial impairment activates Wallerian degeneration has remained unclear. Here, we show that disruption of mitochondrial membrane potential leads to axonal NMNAT2 depletion in mouse sympathetic neurons, increasing the substrate-to-product ratio (NMN/NAD) of this NAD-synthesising enzyme, a metabolic fingerprint of Wallerian degeneration. The mechanism appears to involve both impaired NMNAT2 synthesis and reduced axonal transport. Expression of WLDS and Sarm1 deletion both protect axons after mitochondrial uncoupling. Blocking the pathway also confers neuroprotection and increases the lifespan of flies with Pink1 loss-of-function mutation, which causes severe mitochondrial defects. These data indicate that mitochondrial impairment replicates all the major steps of Wallerian degeneration, placing it upstream of NMNAT2 loss, with the potential to contribute to axon pathology in mitochondrial disorders.


Genetics ◽  
1993 ◽  
Vol 135 (2) ◽  
pp. 419-442
Author(s):  
R Stanewsky ◽  
K G Rendahl ◽  
M Dill ◽  
H Saumweber

Abstract We have performed a genetic analysis of the 14C region of the X chromosome of Drosophila melanogaster to isolate loss of function alleles of no-on-transient A (nonA; 14C1-2; 1-52.3). NONA is a nuclear protein common to many cell types, which is present in many puffs on polytene chromosomes. Sequence data suggest that the protein contains a pair of RNA binding motifs (RRM) found in many single-strand nucleic acid binding proteins. Hypomorphic alleles of this gene, which lead to aberrant visual and courtship song behavior, still contain normally distributed nonA RNA and NONA protein in embryos, and in all available alleles NONA protein is present in puffs of third instar larval polytene chromosomes. We find that complete loss of this general nuclear protein is semilethal in hemizygous males and homozygous cell lethal in the female germline. Surviving males show more extreme defects in nervous system function than have been described for the hypomorphic alleles. Five other essential genes that reside within this region have been partially characterized.


2021 ◽  
Author(s):  
Liana Boraas ◽  
Mengwei Hu ◽  
Lauren Thornton ◽  
Charles E. Vejnar ◽  
Gang Zhen ◽  
...  

AbstractMessenger RNA (mRNA) compartmentalization within the cytosol is well-recognized as a key mechanism of local translation-mediated regulation of protein levels, but whether such localization could be a means of exercising non-coding mRNA function is unknown. Here, we explore non-coding functions for mRNAs associated with focal adhesions (FAs), cellular structures responsible for mediating cell adhesion and response to changes in the extracellular matrix (ECM). Using high-throughput single molecule imaging and genomic profiling approaches, we find that mRNAs with distinct sequence characteristics localize to FAs in different human cell types. Notably, ∼85% of FA-mRNAs are not translationally active at steady state or under conditions of FA dissolution or activation. Untranslated mRNA sequences are anchored to FA based on their functional states by the RNA binding protein, G3BP1, forming biomolecular granules. Removing RNA or G3BP1, but not blocking new polypeptide synthesis, dramatically changes FA protein composition and organization, resulting in loss of cell contractility and cellular ability to adapt to changing ECM. We have therefor uncovered a novel, non-coding role for mRNAs as scaffolds to maintain FA structure and function, broadening our understating of noncanonical mRNA functions.


Genetics ◽  
1992 ◽  
Vol 130 (4) ◽  
pp. 771-790 ◽  
Author(s):  
D G Morton ◽  
J M Roos ◽  
K J Kemphues

Abstract Specification of some cell fates in the early Caenorhabditis elegans embryo is mediated by cytoplasmic localization under control of the maternal genome. Using nine newly isolated mutations, and two existing mutations, we have analyzed the role of the maternally expressed gene par-4 in cytoplasmic localization. We recovered seven new par-4 alleles in screens for maternal effect lethal mutations that result in failure to differentiate intestinal cells. Two additional par-4 mutations were identified in noncomplementation screens using strains with a high frequency of transposon mobility. All 11 mutations cause defects early in development of embryos produced by homozygous mutant mothers. Analysis with a deficiency in the region indicates that it33 is a strong loss-of-function mutation. par-4(it33) terminal stage embryos contain many cells, but show no morphogenesis, and are lacking intestinal cells. Temperature shifts with the it57ts allele suggest that the critical period for both intestinal differentiation and embryo viability begins during oogenesis, about 1.5 hr before fertilization, and ends before the four-cell stage. We propose that the primary function of the par-4 gene is to act as part of a maternally encoded system for cytoplasmic localization in the first cell cycle, with par-4 playing a particularly important role in the determination of intestine. Analysis of a par-4; par-2 double mutant suggests that par-4 and par-2 gene products interact in this system.


2021 ◽  
Vol 30 ◽  
pp. 096368972098607
Author(s):  
Shi-Yuan Liu ◽  
Zhi-Yu Zhao ◽  
Zhe Qiao ◽  
Shao-Min Li ◽  
Wei-Ning Zhang

Long noncoding RNAs (lncRNAs) are increasingly recognized as indispensable components of the regulatory network in the progression of various cancers, including nonsmall cell lung cancer (NSCLC). The lncRNA prostate cancer associated transcript 1 (PCAT1) has been involved in tumorigenesis of multiple malignant solid tumors, but it is largely unknown that what is the role of lncRNA-PCAT1 and how it functions in the progression of lung cancer. Herein, we observed that lncRNA PCAT1 expression was upregulated in both human NSCLC tissues and cell lines, which was determined by qualitative polymerase chain reaction analysis. Then, gain-and loss-of-function manipulations were performed in A549 cells by transfection with a specific short interfering RNA against PCAT1 or a pcDNA-PCAT1 expression vector. The results showed that PCAT1 not only promoted NSCLC cell proliferation and invasion but also inhibited cell apoptosis. Bioinformatics and expression correlation analyses revealed that there was a potential interaction between PCAT1 and the dyskerin pseudouridine synthase 1 (DKC1) protein, an RNA-binding protein. Then, RNA pull-down assays with biotinylated probes and transcripts both confirmed that PCAT1 directly bounds with DKC1 that could also promote NSCLC cell proliferation and invasion and inhibit cell apoptosis. Moreover, the effects of PCAT1 and DKC1 on NSCLC functions are synergistic. Furthermore, PCAT1 and DKC1 activated the vascular endothelial growth factor (VEGF)/protein kinase B (AKT)/Bcl-2/caspase9 pathway in NSCLC cells, and inhibition of epidermal growth factor receptor, AKT, or Bcl-2 could eliminate the effect of PCAT1/DKC1 co-overexpression on NSCLC cell behaviors. In conclusion, lncRNA PCAT1 interacts with DKC1 to regulate proliferation, invasion, and apoptosis in NSCLC cells via the VEGF/AKT/Bcl-2/caspase9 pathway.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Vikram Agarwal ◽  
Sereno Lopez-Darwin ◽  
David R. Kelley ◽  
Jay Shendure

Abstract3′ untranslated regions (3′ UTRs) post-transcriptionally regulate mRNA stability, localization, and translation rate. While 3′-UTR isoforms have been globally quantified in limited cell types using bulk measurements, their differential usage among cell types during mammalian development remains poorly characterized. In this study, we examine a dataset comprising ~2 million nuclei spanning E9.5–E13.5 of mouse embryonic development to quantify transcriptome-wide changes in alternative polyadenylation (APA). We observe a global lengthening of 3′ UTRs across embryonic stages in all cell types, although we detect shorter 3′ UTRs in hematopoietic lineages and longer 3′ UTRs in neuronal cell types within each stage. An analysis of RNA-binding protein (RBP) dynamics identifies ELAV-like family members, which are concomitantly induced in neuronal lineages and developmental stages experiencing 3′-UTR lengthening, as putative regulators of APA. By measuring 3′-UTR isoforms in an expansive single cell dataset, our work provides a transcriptome-wide and organism-wide map of the dynamic landscape of alternative polyadenylation during mammalian organogenesis.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1874
Author(s):  
Suwei Chen ◽  
Sarah J. Annesley ◽  
Rasha A. F. Jasim ◽  
Paul R. Fisher

Mitochondrial dysfunction has been implicated in the pathology of Parkinson’s disease (PD). In Dictyostelium discoideum, strains with mitochondrial dysfunction present consistent, AMPK-dependent phenotypes. This provides an opportunity to investigate if the loss of function of specific PD-associated genes produces cellular pathology by causing mitochondrial dysfunction with AMPK-mediated consequences. DJ-1 is a PD-associated, cytosolic protein with a conserved oxidizable cysteine residue that is important for the protein’s ability to protect cells from the pathological consequences of oxidative stress. Dictyostelium DJ-1 (encoded by the gene deeJ) is located in the cytosol from where it indirectly inhibits mitochondrial respiration and also exerts a positive, nonmitochondrial role in endocytosis (particularly phagocytosis). Its loss in unstressed cells impairs endocytosis and causes correspondingly slower growth, while also stimulating mitochondrial respiration. We report here that oxidative stress in Dictyostelium cells inhibits mitochondrial respiration and impairs phagocytosis in an AMPK-dependent manner. This adds to the separate impairment of phagocytosis caused by DJ-1 knockdown. Oxidative stress also combines with DJ-1 loss in an AMPK-dependent manner to impair or exacerbate defects in phototaxis, morphogenesis and growth. It thereby phenocopies mitochondrial dysfunction. These results support a model in which the oxidized but not the reduced form of DJ-1 inhibits AMPK in the cytosol, thereby protecting cells from the adverse consequences of oxidative stress, mitochondrial dysfunction and the resulting AMPK hyperactivity.


2006 ◽  
Vol 96 (1) ◽  
pp. 492-504 ◽  
Author(s):  
Florian J. Gerich ◽  
Sebastian Hepp ◽  
Irmelin Probst ◽  
Michael Müller

Oxygen withdrawal blocks mitochondrial respiration. In rat hippocampal slices, this triggers a massive depolarization of CA1 neurons and a negative shift of the extracellular DC potential, the characteristic sign of hypoxia-induced spreading depression (HSD). To unveil the contribution of mitochondria to the sensing of hypoxia and the ignition of HSD, we modified mitochondrial function. Mitochondrial uncoupling by carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP, 1 μM) prior to hypoxia hastened the onset and shortened the duration of HSD. Blocking mitochondrial ATP synthesis by oligomycin (10 μg/ml) was without effect. Inhibition of mitochondrial respiration by rotenone (20 μM), diphenyleneiodonium (25 μM), or antimycin A (20 μM) also hastened HSD onset and shortened HSD duration. 3-nitropropionic acid (1 mM) increased HSD duration. Cyanide (100 μM) hastened HSD onset and increased HSD duration. At higher concentrations, cyanide (1 mM), azide (2 mM), and FCCP (10 μM) triggered SD episodes on their own. Compared with control HSD, the spatial extent of the intrinsic optical signals of cyanide- and azide-induced SDs was more pronounced. Monitoring NADH (nicotinamide adenine dinucleotide) and FAD (flavin adenine dinucleotide) autofluorescence and mitochondrial membrane potential verified the mitochondrial targeting by the drugs used. Except 1 mM cyanide, no treatment reduced cellular ATP levels severely and no correlation was found between ATP, NADH, or FAD levels and the time to HSD onset. Therefore ATP depletion or a cytosolic reducing shift due to NADH/FADH2 accumulation cannot serve as a general explanation for the hastening of HSD onset on mitochondrial inhibition. Additional redox couples (glutathione) or events downstream of the mitochondrial depolarization need to be considered.


Sign in / Sign up

Export Citation Format

Share Document