scholarly journals CZON-cutter: a CRISPR-Cas9 system for multiplexed organelle imaging in a simple unicellular alga

2021 ◽  
Author(s):  
Naoto Tanaka ◽  
Yuko Mogi ◽  
Takayuki Fujiwara ◽  
Kannosuke Yabe ◽  
Yukiho Toyama ◽  
...  

The unicellular alga Cyanidioschyzon merolae has a simple cellular structure: each cell has one nucleus, one mitochondrion, one chloroplast, and one peroxisome. This simplicity offers unique advantages for investigating organellar proliferation and the cell cycle. Here, we describe CZON-cutter, an engineered clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) system for simultaneous genome editing and organellar visualization. We engineered a C. merolae strain expressing a nuclear-localized Cas9-Venus nuclease for targeted editing of any locus defined by a single guide RNA (sgRNA). We then successfully edited the algal genome and visualized the mitochondrion and peroxisome in transformants using fluorescent protein reporters with different excitation wavelengths. Fluorescent protein labeling of organelles in living transformants allows us to validate phenotypes associated with organellar proliferation and the cell cycle, even when the edited gene is essential. Combined with the exceptional biological features of C. merolae, CZON-cutter will be instrumental for investigating cellular and organellar division in a high-throughput manner.

2021 ◽  
Author(s):  
Yamato Yoshida ◽  
Naoto Tanaka ◽  
Yuko Mogi ◽  
Takayuki Fujiwara ◽  
Kannosuke Yabe ◽  
...  

The simple cellular structure of the unicellular alga Cyanidioschyzon merolae consists of one nucleus, one mitochondrion, one chloroplast, and one peroxisome per cell and offers unique advantages to investigate mechanisms of organellar proliferation and the cell cycle. Here, we describe an engineered clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated protein 9 (Cas9) system, CZON-cutter, for simultaneous genome editing and organellar visualization. We engineered a C. merolae strain expressing a nuclear-localized Cas9-Venus nuclease to target editing at a locus defined by a single-guide RNA (sgRNA). We then successfully edited the algal genome and visualized the mitochondrion and peroxisome in transformants by fluorescent protein reporters with different excitation wavelengths. Fluorescent protein labeling of organelles in living transformants allows validation of phenotypes associated with organellar proliferation and the cell cycle, even when the edited gene is essential. Combined with the exceptional biological features of C. merolae, CZON-cutter will be instrumental for investigating cellular and organellar division in a high-throughput manner.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoshihiko Nanasato ◽  
Masafumi Mikami ◽  
Norihiro Futamura ◽  
Masaki Endo ◽  
Mitsuru Nishiguchi ◽  
...  

AbstractCryptomeria japonica (Japanese cedar or sugi) is one of the most important coniferous tree species in Japan and breeding programs for this species have been launched since 1950s. Genome editing technology can be used to shorten the breeding period. In this study, we performed targeted mutagenesis using the CRISPR/Cas9 system in C. japonica. First, the CRISPR/Cas9 system was tested using green fluorescent protein (GFP)-expressing transgenic embryogenic tissue lines. Knock-out efficiency of GFP ranged from 3.1 to 41.4% depending on U6 promoters and target sequences. The GFP knock-out region was mottled in many lines, indicating genome editing in individual cells. However, in 101 of 102 mutated individuals (> 99%) from 6 GFP knock-out lines, embryos had a single mutation pattern. Next, we knocked out the endogenous C. japonica magnesium chelatase subunit I (CjChlI) gene using two guide RNA targets. Green, pale green, and albino phenotypes were obtained in the gene-edited cell lines. Sequence analysis revealed random deletions, insertions, and replacements in the target region. Thus, targeted mutagenesis using the CRISPR/Cas9 system can be used to modify the C. japonica genome.


2006 ◽  
Vol 17 (7) ◽  
pp. 3085-3094 ◽  
Author(s):  
Ken Sato ◽  
Miyuki Sato ◽  
Anjon Audhya ◽  
Karen Oegema ◽  
Peter Schweinsberg ◽  
...  

Caveolin is the major protein component required for the formation of caveolae on the plasma membrane. Here we show that trafficking of Caenorhabditis elegans caveolin-1 (CAV-1) is dynamically regulated during development of the germ line and embryo. In oocytes a CAV-1-green fluorescent protein (GFP) fusion protein is found on the plasma membrane and in large vesicles (CAV-1 bodies). After ovulation and fertilization the CAV-1 bodies fuse with the plasma membrane in a manner reminiscent of cortical granule exocytosis as described in other species. Fusion of CAV-1 bodies with the plasma membrane appears to be regulated by the advancing cell cycle, and not fertilization per se, because fusion can proceed in spe-9 fertilization mutants but is blocked by RNA interference–mediated knockdown of an anaphase-promoting complex component (EMB-27). After exocytosis, most CAV-1-GFP is rapidly endocytosed and degraded within one cell cycle. CAV-1 bodies in oocytes appear to be produced by the Golgi apparatus in an ARF-1–dependent, clathrin-independent, mechanism. Conversely endocytosis and degradation of CAV-1-GFP in embryos requires clathrin, dynamin, and RAB-5. Our results demonstrate that the distribution of CAV-1 is highly dynamic during development and provides new insights into the sorting mechanisms that regulate CAV-1 localization.


2002 ◽  
Vol 16 (6) ◽  
pp. 1352-1366 ◽  
Author(s):  
G. Alexander Abel ◽  
Gabriela M. Wochnik ◽  
Joëlle Rüegg ◽  
Audrey Rouyer ◽  
Florian Holsboer ◽  
...  

Abstract To elucidate the mechanisms mediating the reported transient physiological glucocorticoid resistance in G2/M cell cycle phase, we sought to establish a model system of glucocorticoid-resistant cells in G2. We synchronized various cell lines in G2 to measure dexamethasone (DEX)-induced transactivation of either two endogenous promoters (rat tyrosine aminotransferase and mouse metallothionein I) or the mouse mammary tumor virus (MMTV) promoter stably or transiently transfected. To circumvent the need for synchronization drugs, we stably transfected an MMTV-driven green fluorescent protein to directly correlate DEX-induced transactivation with the cell cycle position for each cell of an asynchronous population using flow cytometry. Surprisingly, all promoters tested were DEX-inducible in G2. Even in mitotic cells, only the stably transfected MMTV promoter was repressed, whereas the same promoter transiently transfected was inducible. The use of Hoechst 33342 for synchronization in previous studies probably caused a misinterpretation, because we detected interference of this drug with GR-dependent transcription independent of the cell cycle. Finally, GR activated a simple promoter in G2, excluding a functional effect of cell cycle-dependent phosphorylation of GR, as implied previously. We conclude that GR itself is fully functional throughout the entire cell cycle, but GR responsiveness is repressed in mitosis due to chromatin condensation rather than to specific modification of GR.


1999 ◽  
Vol 19 (12) ◽  
pp. 8191-8200 ◽  
Author(s):  
Philippe Bastin ◽  
Thomas H. MacRae ◽  
Susan B. Francis ◽  
Keith R. Matthews ◽  
Keith Gull

ABSTRACT The paraflagellar rod (PFR) of the African trypanosomeTrypanosoma brucei represents an excellent model to study flagellum assembly. The PFR is an intraflagellar structure present alongside the axoneme and is composed of two major proteins, PFRA and PFRC. By inducible expression of a functional epitope-tagged PFRA protein, we have been able to monitor PFR assembly in vivo. As T. brucei cells progress through their cell cycle, they possess both an old and a new flagellum. The induction of expression of tagged PFRA in trypanosomes growing a new flagellum provided an excellent marker of newly synthesized subunits. This procedure showed two different sites of addition: a major, polar site at the distal tip of the flagellum and a minor, nonpolar site along the length of the partially assembled PFR. Moreover, we have observed turnover of epitope-tagged PFRA in old flagella that takes place throughout the length of the PFR structure. Expression of truncated PFRA mutant proteins identified a sequence necessary for flagellum localization by import or binding. This sequence was not sufficient to confer full flagellum localization to a green fluorescent protein reporter. A second sequence, necessary for the addition of PFRA protein to the distal tip, was also identified. In the absence of this sequence, the mutant PFRA proteins were localized both in the cytosol and in the flagellum where they could still be added along the length of the PFR. This seven-amino-acid sequence is conserved in all PFRA and PFRC proteins and shows homology to a sequence in the flagellar dynein heavy chain of Chlamydomonas reinhardtii.


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Baoyan Fan ◽  
Wanlong Pan ◽  
Xinli Wang ◽  
Michael Chopp ◽  
Zheng Gang Zhang ◽  
...  

Background and Purpose: Adult neurogenesis contributes to functional recovery after stroke. Long non-coding RNAs (lncRNAs) regulate stem cell self-renewal and differentiation. However, the role of lncRNAs in stroke-induced neurogenesis remains unknown. Methods and Results: Using lncRNA array and in situ hybridization, we analyzed lncRNA profiles of adult neural stem cells (NSCs) isolated from the subventricular zone neurogenic region in rats subjected to middle cerebral artery occlusion. We found that H19 was the most highly upregulated lncRNA (19 fold) in ischemic NSCs compared with non-ischemic NSCs. Reduction of endogenous H19 in NSCs by CRISPR-Cas9 genome editing significantly decreased the proliferation and increased the apoptosis of ischemic NSCs, as assayed by the number of BrdU + cells (56±5% vs 22±3%, p<0.01, n=3) and Caspase-3/7 activity compared to NSCs transfected with scrambled small guide RNA (sgRNA). Knockdown of H19 significantly decreased the number of Tuj1 + neuroblasts (8±2% vs 5±0.4%, p<0.01, n=3) and NG 2 + oliogodendrocyte progenitor cells (10±1% vs 5±0.3%, p<0.01, n=3), suggesting that deletion of H19 suppresses the proliferation and survival and blocks the differentiation of NSCs into neurons and oligodendrocytes. Additional RNA-sequencing and bioinformatics analyses revealed that genes deregulated by H19 knockdown were involved in transcription, apoptosis, proliferation, cell cycle and response to hypoxia. Western blot analysis validated that loss-of-function and gain-of-function of H19 significantly increased and reduced, respectively, the transcription of cell cycle-related genes including p27. Using ChIRP assay, we found that upregulated H19 in NSCs was physically associated with EZH2 which catalyzes the repressive H3K27me3 histone marker. Knockdown of H19 significantly reduced the enrichment of H3K27me3 at the promoter of p27, leading to the upregulation of p27 expression and consequently inhibition of NSC proliferation. Conclusions: H19 mediates stroke-induced neurogenesis by regulating genes involved in cell cycle and survival through the interaction with chromatin remodeling proteins. Our data provide novel insights into epigenetic regulation of gene expression by lncRNA in neurogenesis.


2018 ◽  
Vol 19 (12) ◽  
pp. 3778 ◽  
Author(s):  
Nina Bozhanova ◽  
Mikhail Baranov ◽  
Nadezhda Baleeva ◽  
Alexey Gavrikov ◽  
Alexander Mishin

Fluorogens are an attractive type of dye for imaging applications, eliminating time-consuming washout steps from staining protocols. With just a handful of reported fluorogen-protein pairs, mostly in the green region of spectra, there is a need for the expansion of their spectral range. Still, the origins of solvatochromic and fluorogenic properties of the chromophores suitable for live-cell imaging are poorly understood. Here we report on the synthesis and labeling applications of novel red-shifted fluorogenic cell-permeable green fluorescent protein (GFP) chromophore analogs.


Cancers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1260 ◽  
Author(s):  
Arturo Temblador ◽  
Dimitrios Topalis ◽  
Graciela Andrei ◽  
Robert Snoeck

Merkel cell carcinoma (MCC) is an aggressive type of skin cancer whose main causative agent is Merkel cell polyomavirus (MCPyV). MCPyV is integrated into the genome of the tumor cells in most MCCs. Virus-positive tumor cells constitutively express two viral oncoproteins that promote cell growth: the small (sT) and the large (LT) tumor antigens (TAs). Despite the success of immunotherapies in patients with MCC, not all individuals respond to these treatments. Therefore, new therapeutic options continue to be investigated. Herein, we used CRISPR/Cas9 to target the viral oncogenes in two virus-positive MCC cell lines: MS-1 and WAGA. Frameshift mutations introduced in the target sequence upon repair of the Cas9-induced DNA break resulted in decreased LT protein levels, which subsequently impaired cell proliferation, caused cell cycle arrest, and led to increased apoptosis. Importantly, a virus-negative non-MCC cell line (HEK293T) remained unaffected, as well as those cells expressing a non-targeting single-guide RNA (sgRNA). Thus, we presumed that the noted effects were not due to the off-target activity of the TAs-targeting sgRNAs. Additionally, WAGA cells had altered levels of cellular proteins involved in cell cycle regulation, supporting the observed cell cycle. Taken together, our findings provide evidence for the development of a CRISPR/Cas9-based therapeutic option for virus-positive MCC.


2020 ◽  
Vol 6 (43) ◽  
pp. eabb7107
Author(s):  
Peng Yang ◽  
Shih-Jie Chou ◽  
Jindian Li ◽  
Wenqiao Hui ◽  
Wenfei Liu ◽  
...  

Leveraging the endogenous homology-directed repair (HDR) pathway, the CRISPR-Cas9 gene-editing system can be applied to knock in a therapeutic gene at a designated site in the genome, offering a general therapeutic solution for treating genetic diseases such as hemoglobinopathies. Here, a combined supramolecular nanoparticle (SMNP)/supramolecular nanosubstrate–mediated delivery (SNSMD) strategy is used to facilitate CRISPR-Cas9 knockin of the hemoglobin beta (HBB) gene into the adeno-associated virus integration site 1 (AAVS1) safe-harbor site of an engineered K562 3.21 cell line harboring the sickle cell disease mutation. Through stepwise treatments of the two SMNP vectors encapsulating a Cas9•single-guide RNA (sgRNA) complex and an HBB/green fluorescent protein (GFP)–encoding plasmid, CRISPR-Cas9 knockin was successfully achieved via HDR. Last, the HBB/GFP-knockin K562 3.21 cells were introduced into mice via intraperitoneal injection to show their in vivo proliferative potential. This proof-of-concept demonstration paves the way for general gene therapeutic solutions for treating hemoglobinopathies.


Sign in / Sign up

Export Citation Format

Share Document