5-hydroxytryptamine-stimulated mitochondrial movement and microvillar growth in the lower malpighian tubule of the insect, Rhodnius prolixus

1981 ◽  
Vol 49 (1) ◽  
pp. 139-161 ◽  
Author(s):  
T.J. Bradley ◽  
P. Satir

Rapid initiation of ion transport occurs in the lower Malpighian tubule of the insect Rhodnius prolixus following feeding in vivo or stimulation with 5-hydroxytryptamine (5-HT) in vitro. Using the electron microscope, we have conducted a morphometric analysis of cells in the lowest one-third of the lower tubule, demonstrating that 5-HT also induces mitochondrial movement and microvillar growth simultaneously with, but independent of, the onset of ion transport. Mitochondria move from a position below the cell cortex to one inside the microvilli within 10 min of stimulation with 5-HT, resulting in an 8- to 10-fold increase in the volume of mitochondria within the microvilli. Previous findings indicated that mitochondrial movement is dependent on actin-containing microfilaments, but not microtubules. As the mitochondria enter the microvillus, the core microfilaments are reorganized into a sheath of microfilaments, which extends closely parallel to the outer mitochondrial membrane down into the cell interior. This sheath of microfilaments is also observed around mitochondria in the axopods. We suggest that the core microfilaments are responsible for mitochondrial movement into the microvilli and axopods. Stimulation with 5-HT induces a shift in mitochondrial configuration from orthodox to condensed, indicating a possible increase in oxidative phosphorylation. Following stimulation, the microvilli grow about 3 X in volume and 2.5 X in surface area. These increases are more than can be accounted for by mitochondrial invasion and must involve the addition of new membrane and microfilament polymerization. The observed changes - microvillar growth, insertion of additional membrane, activation and movement of mitochondria adjacent to the ion transport membrane - are described in the light of their significance in ion transport. A simple model is proposed which unifies the observed ultrastructural changes and known ion movements in the lower tubule.

Mobile DNA ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Justin M. Waldern ◽  
Dorie Smith ◽  
Carol Lyn Piazza ◽  
E. Jake Bailey ◽  
Nicholas J. Schiraldi ◽  
...  

Abstract Background Group II introns are mobile retroelements, capable of invading new sites in DNA. They are self-splicing ribozymes that complex with an intron-encoded protein to form a ribonucleoprotein that targets DNA after splicing. These molecules can invade DNA site-specifically, through a process known as retrohoming, or can invade ectopic sites through retrotransposition. Retrotransposition, in particular, can be strongly influenced by both environmental and cellular factors. Results To investigate host factors that influence retrotransposition, we performed random insertional mutagenesis using the ISS1 transposon to generate a library of over 1000 mutants in Lactococcus lactis, the native host of the Ll.LtrB group II intron. By screening this library, we identified 92 mutants with increased retrotransposition frequencies (RTP-ups). We found that mutations in amino acid transport and metabolism tended to have increased retrotransposition frequencies. We further explored a subset of these RTP-up mutants, the most striking of which is a mutant in the ribosomal RNA methyltransferase rlmH, which exhibited a reproducible 20-fold increase in retrotransposition frequency. In vitro and in vivo experiments revealed that ribosomes in the rlmH mutant were defective in the m3Ψ modification and exhibited reduced binding to the intron RNA. Conclusions Taken together, our results reinforce the importance of the native host organism in regulating group II intron retrotransposition. In particular, the evidence from the rlmH mutant suggests a role for ribosome modification in limiting rampant retrotransposition.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Liudmila Zakharova ◽  
Hikmet Nural ◽  
Mohamed A Gaballa

Cardiac progenitor cells are generated from atria explants; however the cellular origin and the mechanisms of cell outgrowth are unclear. Using transgenic tamoxifen-induced Willms tumor 1 (Wt1)-Cre/ERT and Cre-activated GFP reporter mice, we found approximately 40% of explant-derived cells and 74% of explant-derived c-Kit+ cells originated from the epicardium. In atria from sham hearts, Wt1+ cells were located in a thin epicardial layer, while c-Kit+ cells were primarily found within both the sub-epicardium and the myocardium, albeit at low frequency. No overlap between c-Kit+ and Wt1+ cells was observed, suggesting that epicardial Wt1+ cells do not express c-Kit marker in vivo, but more likely the c-Kit marker was acquired in culture. Compared with 4 days in culture, at day 21 we observed 7 folds increase in Snail gene expression; 32% increase in α-smooth muscle actin (SMA) marker, and 30% decrease in E-cadherin marker, suggesting that the explant-derived cells underwent epithelial to mesenchymal transition (EMT) in vitro. Cell outgrowths released TGF-β (1036.4 ± 1.18 pm/ml) and exhibited active TGF-β signaling, which might triggered the EMT. Compared to shams, CHF cell outgrowths exhibited elevated levels of EMT markers, SMA (49% vs. 34%) and Snail (2 folds), and reduced level of Wt1 (11% vs. 22%). In addition, CHF cell outgrowths had two folds increase in Pai1 gene expression, a direct target of TGF-β signaling. In c-Kit+ cells derived from CHF explants, Nanog gene expression was 4 folds lower and Sox 2 was 2 folds lower compared with cells from shams. Suppression of EMT in cell outgrowth increased the percentage of c-Kit+ and Wt1+ cells by 17%, and 15%, respectively. Also suppression of EMT in c-Kit+ cells resulted in 4 folds increase in Nanog and 3 fold increase in Sox2 gene expressions. Our results showed that CHF may further exuberates EMT while diminishes the re-activation of pluripotency genes. Thus, EMT modulation in CHF is a possible strategy to regulate both the yield and the pluripotency of cardiac-explant-derived progenitor cells.


1999 ◽  
Vol 202 (3) ◽  
pp. 247-252 ◽  
Author(s):  
T.M. Clark ◽  
A. Koch ◽  
D.F. Moffett

The ‘stomach’ region of the larval mosquito midgut is divided into histologically distinct anterior and posterior regions. Anterior stomach perfused symmetrically with saline in vitro had an initial transepithelial potential (TEP) of −66 mV (lumen negative) that decayed within 10–15 min to a steady-state TEP near −10 mV that was maintained for at least 1 h. Lumen-positive TEPs were never observed in the anterior stomach. The initial TEP of the perfused posterior stomach was opposite in polarity, but similar in magnitude, to that of the anterior stomach, measuring +75 mV (lumen positive). This initial TEP of the posterior stomach decayed rapidly at first, then more slowly, eventually reversing the electrical polarity of the epithelium as lumen-negative TEPs were recorded in all preparations within 70 min. Nanomolar concentrations of the biogenic amine 5-hydroxytryptamine (5-HT, serotonin) stimulated both regions, causing a negative deflection of the TEP of the anterior stomach and a positive deflection of the TEP of the posterior stomach. Phorbol 12,13-diacetate also caused a negative deflection of the TEP of the anterior stomach, but had no effect on the TEP of the posterior stomach. These data demonstrate that 5-HT stimulates region-specific ion-transport mechanisms in the stomach of Aedes aegypti and suggest that 5-HT coordinates the actions of the Malpighian tubules and midgut in the maintenance of an appropriate hemolymph composition in vivo.


2001 ◽  
Vol 114 (24) ◽  
pp. 4575-4585 ◽  
Author(s):  
Tokuko Haraguchi ◽  
Takako Koujin ◽  
Miriam Segura-Totten ◽  
Kenneth K. Lee ◽  
Yosuke Matsuoka ◽  
...  

Mutations in emerin cause the X-linked recessive form of Emery-Dreifuss muscular dystrophy (EDMD). Emerin localizes at the inner membrane of the nuclear envelope (NE) during interphase, and diffuses into the ER when the NE disassembles during mitosis. We analyzed the recruitment of wildtype and mutant GFP-tagged emerin proteins during nuclear envelope assembly in living HeLa cells. During telophase, emerin accumulates briefly at the ‘core’ region of telophase chromosomes, and later distributes over the entire nuclear rim. Barrier-to-autointegration factor (BAF), a protein that binds nonspecifically to double-stranded DNA in vitro, co-localized with emerin at the ‘core’ region of chromosomes during telophase. An emerin mutant defective for binding to BAF in vitro failed to localize at the ‘core’ in vivo, and subsequently failed to localize at the reformed NE. In HeLa cells that expressed BAF mutant G25E, which did not show ‘core’ localization, the endogenous emerin proteins failed to localize at the ‘core’ region during telophase, and did not assemble into the NE during the subsequent interphase. BAF mutant G25E also dominantly dislocalized LAP2β and lamin A from the NE, but had no effect on the localization of lamin B. We conclude that BAF is required for the assembly of emerin and A-type lamins at the reforming NE during telophase, and may mediate their stability in the subsequent interphase.


2021 ◽  
Author(s):  
Bin Qiu ◽  
Zhaohui Zhong ◽  
Shawn Righter ◽  
Yuxue Xu ◽  
Jun Wang ◽  
...  

Abstract FK506-binding protein 51 (encoded by Fkpb51) has been associated with stress-related mental illness. To identify its function, we studied the morphological consequences of Fkbp51 deletion. Artificial Intelligence-assist morphological analysis identified that Fkbp51 knock-out (KO) mice possess more elongated CA and DG but shorter in height in coronal section when compared to WT. Primary cultured Fkbp51 KO hippocampal neurons were shown to exhibit larger dendritic outgrowth than wild-type (WT) controls, pharmacological manipulation experiments suggest that this may occur through regulation of microtubule-associated protein. Both in vitro primary culture and in vivo labeling support that FKBP51 regulates microtubule-associated protein expression. Furthermore, in the absence of differences in mRNA expression, Fkbp51 KO hippocampus exhibited decreases in βIII-tubulin, MAP2, and Tau protein levels, but a greater than 2.5-fold increase in Parkin protein. Overexpression and knock-down FKBP51 demonstrated that FKBP51 negatively regulates Parkin in a dose-dependent and ubiquitin-mediated manner. These results indicate a potential novel post-translational regulatory of Parkin by FKBP51 and significance of their interaction on disease onset.


1987 ◽  
Vol 7 (10) ◽  
pp. 3694-3704
Author(s):  
C Prives ◽  
Y Murakami ◽  
F G Kern ◽  
W Folk ◽  
C Basilico ◽  
...  

Cell extracts of FM3A mouse cells replicate polyomavirus (Py) DNA in the presence of immunoaffinity-purified Py large T antigen, deoxynucleoside triphosphates, ATP, and an ATP-generating system. This system was used to examine the effects of mutations within or adjacent to the Py core origin (ori) region in vitro. The analysis of plasmid DNAs containing deletions within the early-gene side of the Py core ori indicated that sequences between nucleotides 41 and 57 define the early boundary of Py DNA replication in vitro. This is consistent with previously published studies on the early-region sequence requirements for Py replication in vivo. Deleting portions of the T-antigen high-affinity binding sites A and B (between nucleotides 57 and 146) on the early-gene side of the core ori led to increased levels of replication in vitro and to normal levels of replication in vivo. Point mutations within the core ori region that abolish Py DNA replication in vivo also reduced replication in vitro. A mutant with a reversed orientation of the Py core ori region replicated in vitro, but to a lesser extent that wild-type Py DNA. Plasmids with deletions on the late-gene side of the core ori, within the enhancer region, that either greatly reduced or virtually abolished Py DNA replication in vivo replicated to levels similar to those of wild-type Py DNA plasmids in vitro. Thus, as has been observed with simian virus 40, DNA sequences needed for Py replication in vivo are different from and more stringent than those required in vitro.


1997 ◽  
Vol 200 (17) ◽  
pp. 2363-2367 ◽  
Author(s):  
M C Quinlan ◽  
N J Tublitz ◽  
M J O'Donnell

Rhodnius prolixus eliminates NaCl-rich urine at high rates following its infrequent but massive blood meals. This diuresis involves stimulation of Malpighian tubule fluid secretion by diuretic hormones released in response to distention of the abdomen during feeding. The precipitous decline in urine flow that occurs several hours after feeding has been thought until now to result from a decline in diuretic hormone release. We suggest here that insect cardioacceleratory peptide 2b (CAP2b) and cyclic GMP are part of a novel mechanism of anti-diuresis. Secretion rates of 5-hydroxytryptamine-stimulated Malpighian tubules are reduced by low doses of CAP2b or cyclic GMP. Maximal secretion rates are restored by exposing tubules to 1 mmol l-1 cyclic AMP. Levels of cyclic GMP in isolated tubules increase in response to CAP2b, consistent with a role for cyclic GMP as an intracellular second messenger. Levels of cyclic GMP in tubules also increase as urine output rates decline in vivo, suggesting a physiological role for this nucleotide in the termination of diuresis.


1992 ◽  
Vol 12 (3) ◽  
pp. 1266-1275
Author(s):  
W Q Xie ◽  
L I Rothblum

Efficient transcription from the rat rDNA promoter results from an undefined interaction between the core (CPE) and upstream (UPE) promoter elements or the protein complexes which form on them. These interactions were demonstrated by the behavior of promoters that contained either linker-scanning or deletion mutations of the UPE in combination with point mutations of the CPE (bidomain mutants). In vivo transcription experiments using point mutations within the CPE (G----A mutation at either -16 or -7) demonstrated that the CPE may in fact consist of two domains. Whereas both of these mutants were rescued by the addition of UBF to in vitro transcription reactions, the CPE mutant -7A/G was inactive in vivo. Experiments with these bidomain mutants demonstrated that the UPE was required for the rescue of the CPE mutants. We also examined the hypothesis that this interaction might require a stereospecific alignment of the promoter elements. Our results indicate that the promoter consists of several domains with differing responses to mutations that alter the distance between, or within, the promoter elements. For example, the insertion or deletion of half-multiples of the helical repeat distance between -167 and -147 had no significant effect on transcription. On the other hand, some sites were sensitive to deletions of any size but not to insertions of up to 20 bp. The analyses of two sites yielded results suggesting that they lay between domains of the promoter that must be on the same side of the DNA helix for promoter activity. The first of these sites mapped between -106 and -95.(ABSTRACT TRUNCATED AT 250 WORDS)


2015 ◽  
Vol 60 (3) ◽  
pp. 1226-1233 ◽  
Author(s):  
Petros Ioannou ◽  
Aggeliki Andrianaki ◽  
Tonia Akoumianaki ◽  
Irene Kyrmizi ◽  
Nathaniel Albert ◽  
...  

The modestin vitroactivity of echinocandins againstAspergillusimplies that host-related factors augment the action of these antifungal agentsin vivo. We found that, in contrast to the other antifungal agents (voriconazole, amphotericin B) tested, caspofungin exhibited a profound increase in activity against variousAspergillusspecies under conditions of cell culture growth, as evidenced by a ≥4-fold decrease in minimum effective concentrations (MECs) (P= 0. 0005). Importantly, the enhanced activity of caspofungin againstAspergillusspp. under cell culture conditions was strictly dependent on serum albumin and was not observed with the other two echinocandins, micafungin and anidulafungin. Of interest, fluorescently labeled albumin bound preferentially on the surface of germinatingAspergillushyphae, and this interaction was further enhanced upon treatment with caspofungin. In addition, supplementation of cell culture medium with albumin resulted in a significant, 5-fold increase in association of fluorescently labeled caspofungin withAspergillushyphae (P< 0.0001). Collectively, we found a novel synergistic interaction between albumin and caspofungin, with albumin acting as a potential carrier molecule to facilitate antifungal drug delivery toAspergillushyphae.


Sign in / Sign up

Export Citation Format

Share Document