Abstract 41: Explant-Derived Cells from Chronic Heart Failure Activated Endothelial-Mesenchymal Transition and Attenuated Pluripotency Genes Expression

2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Liudmila Zakharova ◽  
Hikmet Nural ◽  
Mohamed A Gaballa

Cardiac progenitor cells are generated from atria explants; however the cellular origin and the mechanisms of cell outgrowth are unclear. Using transgenic tamoxifen-induced Willms tumor 1 (Wt1)-Cre/ERT and Cre-activated GFP reporter mice, we found approximately 40% of explant-derived cells and 74% of explant-derived c-Kit+ cells originated from the epicardium. In atria from sham hearts, Wt1+ cells were located in a thin epicardial layer, while c-Kit+ cells were primarily found within both the sub-epicardium and the myocardium, albeit at low frequency. No overlap between c-Kit+ and Wt1+ cells was observed, suggesting that epicardial Wt1+ cells do not express c-Kit marker in vivo, but more likely the c-Kit marker was acquired in culture. Compared with 4 days in culture, at day 21 we observed 7 folds increase in Snail gene expression; 32% increase in α-smooth muscle actin (SMA) marker, and 30% decrease in E-cadherin marker, suggesting that the explant-derived cells underwent epithelial to mesenchymal transition (EMT) in vitro. Cell outgrowths released TGF-β (1036.4 ± 1.18 pm/ml) and exhibited active TGF-β signaling, which might triggered the EMT. Compared to shams, CHF cell outgrowths exhibited elevated levels of EMT markers, SMA (49% vs. 34%) and Snail (2 folds), and reduced level of Wt1 (11% vs. 22%). In addition, CHF cell outgrowths had two folds increase in Pai1 gene expression, a direct target of TGF-β signaling. In c-Kit+ cells derived from CHF explants, Nanog gene expression was 4 folds lower and Sox 2 was 2 folds lower compared with cells from shams. Suppression of EMT in cell outgrowth increased the percentage of c-Kit+ and Wt1+ cells by 17%, and 15%, respectively. Also suppression of EMT in c-Kit+ cells resulted in 4 folds increase in Nanog and 3 fold increase in Sox2 gene expressions. Our results showed that CHF may further exuberates EMT while diminishes the re-activation of pluripotency genes. Thus, EMT modulation in CHF is a possible strategy to regulate both the yield and the pluripotency of cardiac-explant-derived progenitor cells.

2019 ◽  
Vol 39 (10) ◽  
pp. 2168-2191 ◽  
Author(s):  
Bronson A. Haynes ◽  
Li Fang Yang ◽  
Ryan W. Huyck ◽  
Eric J. Lehrer ◽  
Joshua M. Turner ◽  
...  

Objective: Endothelial cells (EC) in obese adipose tissue (AT) are exposed to a chronic proinflammatory environment that may induce a mesenchymal-like phenotype and altered function. The objective of this study was to establish whether endothelial-to-mesenchymal transition (EndoMT) is present in human AT in obesity and to investigate the effect of such transition on endothelial function and the endothelial particulate secretome represented by extracellular vesicles (EV). Approach and Results: We identified EndoMT in obese human AT depots by immunohistochemical co-localization of CD31 or vWF and α-SMA (alpha-smooth muscle actin). We showed that AT EC exposed in vitro to TGF-β (tumor growth factor-β), TNF-α (tumor necrosis factor-α), and IFN-γ (interferon-γ) undergo EndoMT with progressive loss of endothelial markers. The phenotypic change results in failure to maintain a tight barrier in culture, increased migration, and reduced angiogenesis. EndoMT also reduced mitochondrial oxidative phosphorylation and glycolytic capacity of EC. EVs produced by EC that underwent EndoMT dramatically reduced angiogenic capacity of the recipient naïve ECs without affecting their migration or proliferation. Proteomic analysis of EV produced by EC in the proinflammatory conditions showed presence of several pro-inflammatory and immune proteins along with an enrichment in angiogenic receptors. Conclusions: We demonstrated the presence of EndoMT in human AT in obesity. EndoMT in vitro resulted in production of EV that transferred some of the functional and metabolic features to recipient naïve EC. This result suggests that functional and molecular features of EC that underwent EndoMT in vivo can be disseminated in a paracrine or endocrine fashion and may induce endothelial dysfunction in distant vascular beds.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Liudmila Zakharova ◽  
Hikmet Nural ◽  
James R Nimlos ◽  
Snjezana Popovic ◽  
Lorraine Feehery ◽  
...  

A pilot clinical study using autologous c-Kit+ cells showed improvement in cardiac functions in congestive heart failure (CHF), however, it is unclear if c-Kit+ cells isolated from CHF hearts are equally as potent as cells from controls. To test the potency of CHF c-Kit+ cells, myocardial infarction (MI) was created by permanent ligation of the left anterior descending coronary artery. Six weeks after MI, animals with left ventricle end-diastolic pressure (LVEDP) ≥20 mmHg and scar size ≥30% of left ventricle (LV) were designated as CHF rats. We found that CHF atrial explants generated less c-Kit+ cells compared to shams (15.7% vs. 11% sham vs. CHF). CHF c-Kit+ cells exhibited elevated levels of epicardial to mesenchymal transition markers, including Snail (2.5 fold) and Pai1 (3 fold), while the expression level of epithelial marker, E-cadherin was 3 fold lower in CHF c-Kit+ cells. Moreover, CHF c-Kit+ cells exhibited reduced gene expressions of pluripotency markers; 2.1 fold decrease in Nanog and 4.5 fold decrease in Sox 2 compared to sham cells. To evaluate the potency of the c-Kit+ cells, 1 x 10 6 cells isolated from CHFs or shams were delivered to 3 weeks post-MI CHF hearts. Cells were pre-labeled with GFP to enable their tracing in vivo and delivered to the infarcted myocardium via left coronary vein by a retrograde coronary sinus cell infusion (RCI). RCI delivery resulted in a cell distribution of LV (30%), right atrium (30%) and right ventricle (20%), while only 10% of cells were found in a left atrium. Three weeks after cells delivery, rats transplanted with sham c-Kit+ cells showed improved LVEDP (29.4 ± 6 vs. 11.7 ± 3.5 mmHg, CHF vs. CHF+ sham c-Kit+ cells) and a rise in peak rate of pressure (dPdt max) (3988 ± 520 vs. 5333 ± 597 mmHg/s). In contrast, no functional improvement was detected in rats transplanted with CHF c-Kit+ cells. Histological analysis demonstrated that transplanted c-Kit+/GFP+ cells were mostly incorporated into blood vessels and co-localized with endothelial marker vWf, and α-smooth muscle actin. Our results showed that left coronary vein is an efficient route for c-Kit+ cell delivery and that c-Kit+ cells isolated from CHF rats are less potent when transplanted in chronic heart failure rat model compared to those isolated from control.


2014 ◽  
Vol 26 (1) ◽  
pp. 212
Author(s):  
A. Lange-Consiglio ◽  
G. Accogli ◽  
F. Cremonesi ◽  
S. Desantis

Epithelial to mesenchymal transition (EMT) is the process by which epithelial cells dramatically alter their shape and motile behaviour as they differentiate into mesenchymal cells. The EMT and the reverse process, termed mesenchymal–epithelial transition, play central roles in embryogenesis. Gastrulation and neural crest formation are processes governed by EMT in amniotes. It is noteworthy that in placental mammals, the epithelial layer of amnion originates from the trophectoderm and it is continuous with the epiblast. On this basis, it is reasonable to speculate that some amniotic epithelial cells may escape the specification that accompanies gastrulation, and may retain some of the characteristics of epiblastic cells, such as pluripotency, behaving as stem cells that are able to preserve intrinsically the ability to transdifferentiate. Because it seems that malignant cells use the same mechanisms during the formation of tumours in vivo, the amniotic epithelial cells (AEC) could represent a good model to study in vitro this phenomenon that we observed to occur spontaneously in our culture conditions. The aim of this study was to characterise the glycoprotein pattern expressed in fresh or cryopreserved equine AEC, mesenchymal (AMC), and transdifferentiated cells by means of lectin histochemistry. AEC and AMC were cultured until passage (P) 3, while transdifferentiated cells at P1(EMT1) and P2 (EMT2). All cell lines were frozen for 1 month at –196°C in liquid nitrogen. The glycoanalysis was performed with a panel of twelve lectins to detect the glycans terminating with sialic acids (MAL II, SNA, PNA after sialidase digestion (K-s), K-s-DBA), galactose (PNA, RCA120, GSA I-B4,), N-acetylgalactosamine (DBA, HPA, SBA), N-acetylglucosamine (GSA II), fucose (UEA I, LTA), or with internal mannose (Con A). After freezing: 1) AEC exhibited decrease of binding sites for DBA, SBA, HPA, GSA II, and disappearance of GSA I-B4 and UEA I binders; 2) AMC displayed increase of SBA reactivity, decrease of K-s-PNA, HPA, GSA II staining, and absence of GSA I-B4 affinity; 3) EMT1 cells showed the appearance of K-s-DBA staining, the increase of K-s-PNA, RCA120, SBA, GSA I-B4, and UEA I reactivity, the decrease of MAL II, SNA, HPA, GSA II binders, and the disappearance of DBA and LTA binding sites; 4) EMT2 cells revealed the increase of K-s-PNA, GSA I-B4, UEA I affinity, the decrease of MAL II, SNA, RCA120, HPA, GSA II binders, and the lack of DBA, SBA, and LTA reactivity. In conclusion, this study demonstrates that the EMT induces changes in cell surface glycan profile of equine amniotic progenitor cells, and for the first time revealed that freezing modifies the lectin binding pattern of these cells. The observed glycan pattern modification may represent one aspect of the spontaneous complex process of EMT.


2008 ◽  
Vol 20 (1) ◽  
pp. 82
Author(s):  
M. Paczkowski ◽  
C. Bidwell ◽  
D. Spurlock ◽  
J. Waddell ◽  
R. L. Krisher

The in vitro culture environment significantly impacts nuclear maturation, fertilization, embryonic development, and epigenetic competence; however, our knowledge of the effects of in vitro maturation on oocyte developmental competence, and specifically cytoplasmic maturation, is limited. The objective of this experiment was to identify alterations in the transcriptome of oocytes matured in vitro compared to those matured in vivo that correlate to developmental competence. Immature oocytes were collected from Day 26 and 7-8-week-old B6D2F1 mice 48 h post-pregnant mare serum gonadotropin (PMSG) administration and matured for 16 h in Gmat supplemented with 0.5 mm citric acid, 0.5 mm cysteamine, 100 ng mL–1 epidermal growth factor (EGF), 0.05% insulin-transferrin-selenium (ITS; v/v), 0.01% recombumin (v/v) and 2 mg mL–1 fetuin. In vivo-matured oocytes from females of the same ages were collected from the oviducts 62 h post-PMSG and 14 h post-hCG and mating to vasectomized males. In vivo- and in vitro-matured oocytes were identified visually by the presence of the first polar body. Mature oocytes were pooled into three groups of 150 oocytes per treatment and lysed; poly A+ RNA was extracted. Samples were processed through two cycles of linear amplification and hybridized to the GeneChip� Mouse Genome 430 2.0 Array (Affymetrix, Inc., Santa Clara, CA, USA), with three arrays per treatment. Microarray data were sorted and filtered to include genes that were classified as having two present calls per treatment. The data were then normalized to the chip median and analyzed using a one-way analysis of variance; the level of significance was calculated at P < 0.01. In total, 2.17% (482/22170) and 1.61% (358/22170) of genes were differentially expressed between in vitro- and in vivo-matured oocytes in Day 26 and 7–8-week-old mice, respectively. However, 72.82% (351/482) and 67.87% (243/358) of differentially expressed genes had increased abundance in the in vitro- and in vivo-matured oocytes, respectively. Transcripts involved in gene expression, cellular growth and proliferation, and cellular development were increased in in vivo-matured oocytes from both age groups compared to those matured in vitro. Cell death was one of the higher ranking functional groups increased in the 7–8-week-old in vitro-matured oocytes compared to the 7–8-week-old in vivo-matured oocytes. Specific genes altered by in vitro maturation conditions in Day 26 oocytes were DNA methyltransferase 1 (>7-fold increase in vivo), caspase 8 (>4-fold increase in vivo), and eukaryotic translation initiation factor 1B (>4-fold increase in vivo). DNA methyltransferase 1 and ubiquitin-conjugating enzyme E2T were significantly increased in in vivo-matured 7–8-week-old oocytes (>3-fold and >5-fold, respectively). These results indicate that gene expression is altered in oocytes matured in vitro compared to those matured in vivo. Based on the functional annotations of genes differentially expressed, dysregulation of gene expression in the oocyte resulting in altered DNA methylation and an up-regulation in cell death pathways are potential developmental mechanisms influenced by in vitro culture conditions that correlate to reduced embryonic developmental potential.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 739-739
Author(s):  
Vijay P. S. Rawat ◽  
Natalia Arseni ◽  
Farid Ahmed ◽  
Medhanie A. Mulaw ◽  
Silvia Thoene ◽  
...  

Abstract Abstract 739 Recent studies suggest that a variety of regulatory molecules active in embryonic development such as clustered and non-clustered homeobox genes play an important role in normal and malignant hematopoiesis. Since it was shown that the Xvent-2 homeobox gene is part of the BMP-4 signalling pathway in Xenopus, it is of particular interest to examine the expression profile and function of its only recently discovered human homologue VENTX in hematopoietic development. Expression of the VENTX gene was analyzed in normal human hematopoiesis and AML patients samples by microarray and qPCR. To test the impact of the constitutive expression of VENTX on human progenitor cells, CD34+ cord blood (CB) cells were retrovirally transduced with VENTX or the empty control vector and analyzed using in vitro and in vivo assays. So far we and others have not been able to identify a murine Xenopus xvent gene homologue. However, we were able to document the expression of this gene by qPCR in human lineage positive hematopoietic subpopulations. Amongst committed progenitors VENTX was significantly 13-fold higher expressed in CD33+ BM myeloid cells (4/4 positive) compared to CD19+ BM lymphoid cells (5/7 positive, p=0.01). Of note, expression of VENTX was negligible in normal CD34+/CD38− but detectable in CD34+ BM human progenitor cells. In contrast to this, leukemic CD34+/CD38− from AML patients (n=3) with translocation t(8,21) showed significantly elevated expression levels compared to normal CD34+ BM cells (n=5) (50-fold higher; p≤0.0001). Furthermore, patients with normal karyotype NPM1c+/FLT3-LM− (n=9), NPM1c−/FLT3-LM+ (n=8) or patients with t(8;21) (n=9) had an >100-fold higher expression of VENTX compared to normal CD34+ BM cells and a 5- to 7.8-fold higher expression compared to BM MNCs. Importantly, lentivirus-mediated long-term silencing of VENTX in human AML cell lines (mRNA knockdown between 58% and 75%) led to a significant, reduction in cell number compared to the non-silencing control construct (>79% after 120h). Suggesting that growth of human leukemic cell lines depends on VENTX expression in vitro. As we observed that VENTX is aberrantly expressed in leukemic CD34+ cells with negligible expression in normal counterparts, we assessed the impact of forced VENTX gene expression in normal CD34+ human progenitor cells on the transcription program. Gene expression and pathway analysis demonstrated that in normal CD34+ cells enforced expression of VENTX initiates genes associated with myeloid development (CD11b, CD125, CD9,CD14 and M-CSF), and downregulates genes involved in early lymphoid development (IL-7, IL-9R, LEF1/TCF and C-JUN) and erythroid development such as EPOR, CD35 and CD36. We then tested whether enforced expression of VENTX in CD34+ cells is able to alter the hematopoietic development of early human progenitors as indicated by gene expression and pathway analyses. Functional analyses confirmed that aberrant expression of VENTX in normal CD34+ human progenitor cells induced a significant increase in the number of myeloid colonies compared to the GFP control with 48 ± 6.5 compared to 28.9 ± 4.8 CFU-G per 1000 initially plated CD34+ cells (n=11; p=0.03) and complete block in erythroid colony formation with an 81% reduction of the number of BFU-E compared to the control (n=11; p<0.003). In a feeder dependent co-culture system, VENTX impaired the development of B-lymphoid cells. In the NOD/SCID xenograft model, VENTX expression in CD34+ CB cells promoted generation of myeloid cells with an over 5-fold and 2.5-fold increase in the proportion of human CD15+ and CD33+ primitive myeloid cells compared to the GFP control (n=5, p=0.01). Summary: Overexpression of VENTX perturbs normal hematopoietic development, promotes generation of myeloid cells and impairs generation of lymphoid cells in vitro and in vivo. Whereas VENTX depletion in human AML cell lines impaired their growth.Taken together, these data extend our insights into the function of human embryonic mesodermal factors in human hematopoiesis and indicate a role of VENTX in normal and malignant myelopoiesis. Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Vol 30 (8) ◽  
pp. 1154 ◽  
Author(s):  
Anne-Laure Nivet ◽  
Isabelle Dufort ◽  
Isabelle Gilbert ◽  
Marc-André Sirard

In reproduction, FSH is one of the most important hormones, especially in females, because it controls the number of follicles and the rate of follicular growth. Although several studies have examined the follicular response at the transcriptome level, it is difficult to obtain a clear and complete picture of the genes responding to an increase in FSH in an in vivo context because follicles undergo rapid morphological and physical changes during their growth. To help define the transcriptome downstream response to FSH, an in vitro model was used in the present study to observe the short-term (4 h) cellular response. Gene expression analysis highlighted a set of novel transcripts that had not been reported previously as being part of the FSH response. Moreover, the results of the present study indicate that the epithelial to mesenchymal transition pathway is inhibited by short-term FSH stimuli, maintaining follicles in a growth phase and preventing differentiation. Modulating gene expression in vitro has physiological limitations, but it can help assess the potential downstream response and begin the mapping of the granulosa cell transcriptome in relation to FSH. This information is a key feature to help discriminate between the effects of FSH and LH, or to elucidate the overlapping of insulin-like growth factor 1 and FSH in the granulosa mitogenic response.


Author(s):  
Amlan Chakraborty ◽  
Venkatakrishna R. Jala ◽  
Sutirtha Chakraborty ◽  
R. Eric Berson ◽  
M. Keith Sharp ◽  
...  

Wall shear stress (WSS) plays a key role in altering intracellular pathways and gene expression of endothelial cells, and has significant impacts on atherosclerotic plaque development (1–3). Further, the atherogenic regulators Leukotriene B4 (LTB4) and Lipopolysaccharide (LPS) have significant impacts on the pathophysiology of many inflammatory diseases. This study investigates the effects of oscillatory shear directionality on pro-atherogenic gene expression (I-CAM, E-Selectin, and IL-6) in the presence of LTB4 and LPS. An orbital shaker was used to expose the endothelial cells to oscillatory shear in culture dishes, and Computational fluid dynamics (CFD) was applied to quantify the shear stress on the bottom of the orbiting dish. Directionality of oscillatory shear was characterized by a newly developed hemodynamic parameter — Directional oscillatory shear index (DOSI), which was demonstrated in a previous study to significantly impact cell morphology (4). Results showed that DOSI significantly altered gene expression. Therefore, directionality of shear modulates atherosclerotic gene expression in vitro and thus, may influence the formation of atherosclerotic plaque in vivo.


Blood ◽  
1996 ◽  
Vol 88 (12) ◽  
pp. 4452-4462 ◽  
Author(s):  
NJ Elwood ◽  
H Zogos ◽  
T Willson ◽  
CG Begley

The clinical application of gene transfer is hindered by the availability of the multipotential stem cells and the difficulty in obtaining efficient retroviral transduction. To assess potential means by which gene transfer into human hemopoietic stem cells might be enhanced, the retroviral transduction efficiency of human bone marrow cells (BM) or peripheral blood progenitor cells (PBPC) was compared at multiple time points after in vivo administration of granulocyte colony- stimulating factor (G-CSF). This was further compared with the transduction efficiency of cells mobilized with G-CSF plus stem cell factor (SCF) in a cohort of patients randomized to receive either one or two growth factors and with normal BM function. Using the LNL6 retrovirus, retroviral transduction efficiencies of up to 19% were observed for both PBPC and BM (n = 26 patients). There was at least a 100-fold increase in PBPC with G-CSF alone and a further 30-fold increase in the total number of progenitor cells available for retroviral transduction using the combination of SCF plus G-CSF. However, pretreatment of patients with G-CSF with or without SCF did not enhance the retroviral infectability of growth factor-mobilized progenitor cells. The effect of the growth factor, Flk-2/Flt3 ligand (FL), was also examined with respect to retroviral transduction efficiency of human progenitor cells. FL plus IL-3 in vitro increased the retroviral transduction efficiency up to eightfold compared with results observed using other combinations of cytokines tested (P < .001). These findings have clinical implications both for increasing the number of target cells for in vivo gene-marking/gene-therapy studies and improving the efficiency of gene transfer.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 290 ◽  
Author(s):  
Xinlei Li ◽  
Ruju Chen ◽  
Sherri Kemper ◽  
David R Brigstock

During chronic liver injury, hepatic stellate cells (HSC) undergo activation and are the principal cellular source of collagenous scar. In this study, we found that activation of mouse HSC (mHSC) was associated with a 4.5-fold increase in extracellular vesicle (EV) production and that fibrogenic gene expression (CCN2, Col1a1) was suppressed in Passage 1 (P1; activated) mHSC exposed to EVs from Day 4 (D4; relatively quiescent) mHSC but not to EVs from P1 mHSC. Conversely, gene expression (CCN2, Col1a1, αSMA) in D4 mHSC was stimulated by EVs from P1 mHSC but not by EVs from D4 mHSC. EVs from Day 4 mHSC contained only 46 proteins in which histones and keratins predominated, while EVs from P1 mHSC contained 337 proteins and these were principally associated with extracellular spaces or matrix, proteasome, collagens, vesicular transport, metabolic enzymes, ribosomes and chaperones. EVs from the activated LX-2 human HSC (hHSC) line also promoted fibrogenic gene expression in D4 mHSC in vitro and contained 524 proteins, many of which shared identity or had functional overlap with those in P1 mHSC EVs. The activation-associated changes in production, function and protein content of EVs from HSC likely contribute to the regulation of HSC function in vivo and to the fine-tuning of fibrogenic pathways in the liver.


2020 ◽  
Vol 11 (12) ◽  
Author(s):  
Meng Wang ◽  
Xiaowen Qiao ◽  
Tamara Cooper ◽  
Wei Pan ◽  
Liang Liu ◽  
...  

AbstractCervical cancer is one of the most common gynecological tumors in the world, and human papillomavirus (HPV) infection is its causative agent. However, the molecular mechanisms involved in the carcinogenesis of cervical cancer still require clarification. Here we found that knockdown of Non-SMC (Structural Maintenance of Chromosomes) condensin I complex subunit H (NCAPH) gene expression significantly inhibited the proliferation, migration, invasion and epithelial–mesenchymal transition (EMT) of cervical cancer cells in vitro, and restrained xenograft tumor formation in vivo. Intriguingly, HPV E7 could form a positive feedback loop with NCAPH. E7 upregulated NCAPH gene expression via E2F1 which initiated NCAPH transcription by binding to its promoter directly. Silencing of NCAPH reduced E7 transcription via promoting the transition of AP-1 heterodimer from c-Fos/c-Jun to Fra-1/c-Jun. Moreover, the E7-mediated NCAPH overexpression was involved in the activation of the PI3K/AKT/SGK signaling pathway. In vivo, NCAPH expression in cervical cancer tissues was significantly higher than which in normal cervix and high-grade squamous intraepithelial lesion (HSIL) tissues, and its expression was significantly correlated with tumor size, depth of invasion and lymph node metastasis. Patients with high NCAPH expression had a significantly better survival outcomes than those with low-expression, suggesting that NCAPH-induced cell proliferation might sensitize cancer cells to adjuvant therapy. In conclusion, our results revealed the role of NCAPH in the carcinogenesis of cervical cancer in vitro and in vivo. The interaction between E7 and NCAPH expands the mechanism of HPV induced tumorigenesis and that of host genes regulating HPV E7.


Sign in / Sign up

Export Citation Format

Share Document