Transplantation studies to investigate mesoderm-ectoderm adhesive cell interactions during gastrulation

1986 ◽  
Vol 82 (1) ◽  
pp. 99-117
Author(s):  
K.E. Johnson

Experiments involving transplantation of the roof of the blastocoel in Rana pipiens embryos reveal that the inner surface of the roof of the blastocoel must be coated with a fibrous extracellular matrix (F-ECM) to serve as a substratum for mesodermal cell migration. When the roof of the blastocoel is inverted the original outer surface, now projecting toward the blastocoel, does not become coated with F-ECM and does not support mesodermal cell migration. When the roof of the blastocoel is removed from a normal embryo and transplanted into an interspecific arrested hybrid embryo known to be deficient in F-ECM synthesis, the grafted ectodermal fragment does not become coated with F-ECM and does not support normal mesodermal cell migration. When a hybrid graft is placed in a normal embryo, the grafted ectodermal fragment becomes coated with F-ECM and supports mesodermal cell migration. In normal control embryos migrating mesodermal cells are polarized due to formation of lamellipodia on their leading but not their trailing edges. These cells are arranged in overlapping layers. The leading cells form lamellipodia on the roof of the blastocoel and trailing cells form lamellipodia on one another.

1984 ◽  
Vol 68 (1) ◽  
pp. 49-67
Author(s):  
N. Nakatsuji ◽  
K.E. Johnson

Using time-lapse cinemicrography and scanning electron microscopy, we have shown that normal Rana embryos and gastrulating hybrid embryos have extracellular fibrils on the inner surface of the ectodermal layer. These fibrils are absent prior to gastrulation and appear in increasing numbers during gastrulation. They can also be deposited in vitro where they condition substrata in such a way that normal presumptive mesodermal cells placed on them show extensive attachment and unoriented cell movement. These fibrils are also present in some arrested hybrid embryos, but in reduced numbers, or are lacking in other arrested hybrid embryos. Explanted ectodermal fragments from arrested hybrid embryos fail both to condition culture substrata by the deposition of fibrils and to promote cell attachment and translocation. In contrast, ectodermal fragments from normal embryos can condition culture substrata so as to promote moderate cell attachment and, for one particular gamete combination, even cell translocation of presumptive mesodermal cells taken from arrested hybrid embryos. These results provide new evidence to support the hypothesis that extracellular fibrils represent a system that promotes mesodermal cell migration in amphibian embryos. Differences in the fibrillar system in urodele and anuran embryos are discussed in relation to fundamental differences in the mode of mesodermal cell migration in these two classes of Amphibia.


1983 ◽  
Vol 59 (1) ◽  
pp. 61-70
Author(s):  
N. Nakatsuji ◽  
K.E. Johnson

Previous studies have shown the presence of a network of extracellular fibrils on the inner surface of the ectodermal layer of the Ambystoma maculatum gastrulae. The alignment of the network along the blastopore-animal pole axis has suggested that the network of fibrils guides the migrating mesodermal cells in gastrulae by contact guidance. We have also shown that these fibrils can be deposited on substrata by explanted embryonic fragments and that substrata conditioned in this manner support directed cell migration. In this study, we found that the appearance of the fibrils in the embryos coincides with the start of cell migration towards the animal pole. Gastrulae of three urodele species examined (A. maculatum, A. mexicanum and Cynops pyrrhogaster) have similar dense networks of fibrils. Xenopus laevis gastrulae also have similar fibrils but fewer fibrils compared to urodele embryos. Rana pipiens gastrulae have very few extracellular fibrils. The scarcity of the fibrils in anuran species may be related to the differences in arrangement of mesodermal cells during migration.


Author(s):  
B. J. Panessa ◽  
J. F. Gennaro

Tissue from the hood and sarcophagus regions were fixed in 6% glutaraldehyde in 1 M.cacodylate buffer and washed in buffer. Tissue for SEM was partially dried, attached to aluminium targets with silver conducting paint, carbon-gold coated(100-500Å), and examined in a Kent Cambridge Stereoscan S4. Tissue for the light microscope was post fixed in 1% aqueous OsO4, dehydrated in acetone (4°C), embedded in Epon 812 and sectioned at ½u on a Sorvall MT 2 ultramicrotome. Cross and longitudinal sections were cut and stained with PAS, 0.5% toluidine blue and 1% azure II-methylene blue. Measurements were made from both SEM and Light micrographs.The tissue had two structurally distinct surfaces, an outer surface with small (225-500 µ) pubescent hairs (12/mm2), numerous stoma (77/mm2), and nectar glands(8/mm2); and an inner surface with large (784-1000 µ)stiff hairs(4/mm2), fewer stoma (46/mm2) and larger, more complex glands(16/mm2), presumably of a digestive nature.


Author(s):  
J. Roemer ◽  
S.R. Simon

We are developing an in vitro interstitial extracellular matrix (ECM) system for study of inflammatory cell migration. Falcon brand Cyclopore membrane inserts of various pore sizes are used as a support substrate for production of ECM by R22 rat aortic smooth muscle cells. Under specific culture conditions these cells produce a highly insoluble matrix consisting of typical interstitial ECM components, i.e.: types I and III collagen, elastin, proteoglycans and fibronectin.


Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 135
Author(s):  
Pau Urdeitx ◽  
Mohamed H. Doweidar

Mechanical and electrical stimuli play a key role in tissue formation, guiding cell processes such as cell migration, differentiation, maturation, and apoptosis. Monitoring and controlling these stimuli on in vitro experiments is not straightforward due to the coupling of these different stimuli. In addition, active and reciprocal cell–cell and cell–extracellular matrix interactions are essential to be considered during formation of complex tissue such as myocardial tissue. In this sense, computational models can offer new perspectives and key information on the cell microenvironment. Thus, we present a new computational 3D model, based on the Finite Element Method, where a complex extracellular matrix with piezoelectric properties interacts with cardiac muscle cells during the first steps of tissue formation. This model includes collective behavior and cell processes such as cell migration, maturation, differentiation, proliferation, and apoptosis. The model has employed to study the initial stages of in vitro cardiac aggregate formation, considering cell–cell junctions, under different extracellular matrix configurations. Three different cases have been purposed to evaluate cell behavior in fibered, mechanically stimulated fibered, and mechanically stimulated piezoelectric fibered extra-cellular matrix. In this last case, the cells are guided by the coupling of mechanical and electrical stimuli. Accordingly, the obtained results show the formation of more elongated groups and enhancement in cell proliferation.


1971 ◽  
Vol 49 (12) ◽  
pp. 2067-2073 ◽  
Author(s):  
L. J. Littlefield ◽  
C. E. Bracker

The urediospores of Melampsora lini (Ehrenb.) Lev. are echinulate, with spines ca. 1 μ long over their surface. The spines are electron-transparent, conical projections, with their basal portion embedded in the electron-dense spore wall. The entire spore, including the spines, is covered by a wrinkled pellicle ca. 150–200 Å thick. The spore wall consists of three recognizable layers in addition to the pellicle. Spines form initially as small deposits at the inner surface of the spore wall adjacent to the plasma membrane. Endoplasmic reticulum occurs close to the plasma membrane in localized areas near the base of spines. During development, the spore wall thickens, and the spines increase in size. Centripetal growth of the wall encases the spines in the wall material. The spines progressively assume a more external position in the spore wall and finally reside at the outer surface of the wall. A mutant strain with finely verrucose spores was compared to the wild type. The warts on the surface of the mutant spores are rounded, electron-dense structures ca. 0.2–0.4 μ high, in contrast to spines of the wild type. Their initiation near the inner surface of the spore wall and their eventual placement on the outer surface of the spore are similar to that of spines. The wall is thinner in mutant spores than in wild-type spores.


Development ◽  
1994 ◽  
Vol 120 (2) ◽  
pp. 425-432 ◽  
Author(s):  
X. Zhang ◽  
M.P. Sarras

Interstitial cell (I-cell) migration in hydra is essential for establishment of the regional cell differentiation pattern in the organism. All previous in vivo studies have indicated that cell migration in hydra is a result of cell-cell interactions and chemotaxic gradients. Recently, in vitro cell adhesion studies indicated that isolated nematocytes could bind to substrata coated with isolated hydra mesoglea, fibronectin and type IV collagen. Under these conditions, nematocytes could be observed to migrate on some of these extracellular matrix components. By modifying previously described hydra grafting techniques, two procedures were developed to test specifically the role of extracellular matrix components during in vivo I-cell migration in hydra. In one approach, the extracellular matrix structure of the apical half of the hydra graft was perturbed using beta-aminopropionitrile and beta-xyloside. In the second approach, grafts were treated with fibronectin, RGDS synthetic peptide and antibody to fibronectin after grafting was performed. In both cases, I-cell migration from the basal half to the apical half of the grafts was quantitatively analyzed. Statistical analysis indicated that beta-aminopropionitrile, fibronectin, RGDS synthetic peptide and antibody to fibronectin all were inhibitory to I-cell migration as compared to their respective controls. beta-xyloside treatment had no effect on interstitial cell migration. These results indicate the potential importance of cell-extracellular matrix interactions during in vivo I-cell migration in hydra.


Sign in / Sign up

Export Citation Format

Share Document