Conditional absence of mitosis-specific antigens in a temperature-sensitive embryonic-arrest mutant of Caenorhabditis elegans

1987 ◽  
Vol 87 (2) ◽  
pp. 305-314 ◽  
Author(s):  
R.M. Hecht ◽  
M. Berg-Zabelshansky ◽  
P.N. Rao ◽  
F.M. Davis

A monoclonal antibody, specific to phosphoproteins in mitotic HeLa cells was found to crossreact with a similar set of proteins in embryos of the nematode, Caenorhabditis elegans. In C. elegans, as in mammalian cells, the highly conserved antigenic epitope is associated with a family of high molecular weight polypeptides. The antigenic reactivity of these multiple proteins also depends on their phosphorylation, since antibody binding is reduced after alkaline phosphatase treatment. The antigens are detected at the centrosomes, and in the nuclear region and surrounding cytoplasm of mitotic cells. The significance of these antigens is emphasized by their absence at restrictive temperature in embryos of the temperature-sensitive embryonic-arrest mutant, emb-29V. Furthermore, temperature shift-down experiments suggest that the emb-29 mutation defines a cell division cycle function that affects an essential activity required for progression into M phase.

1997 ◽  
Vol 139 (7) ◽  
pp. 1747-1759 ◽  
Author(s):  
Elizabeth Daro ◽  
David Sheff ◽  
Marie Gomez ◽  
Thomas Kreis ◽  
Ira Mellman

Recent evidence has suggested that subunits of the coatomer protein (COPI) complexes are functionally associated with endosomes in mammalian cells. We now provide genetic evidence that COPI plays a role in endocytosis in intact cells. The ldlF mutant CHO cell line bears a temperature-sensitive defect in the COPI subunit ε-COP. In addition to exhibiting conditional defects in the secretory pathway, we find that the cells are also defective at mediating endosome-associated functions. As found for cells microinjected with anti-COPI antibodies, ldlF cells at the restrictive temperature could not be infected by vesicular stomatitis (VSV) or Semliki Forest virus (SFV) that require delivery to acidic endosomes to penetrate into the cytosol. Although there was no temperature-sensitive defect in the internalization of receptor-bound transferrin (Tfn), Tfn recycling and accumulation of HRP were markedly inhibited at the restrictive temperature. Sorting of receptor-bound markers such as EGF to lysosomes was also reduced, although delivery of fluid-phase markers was only partially inhibited. In addition, lysosomes redistributed from their typical perinuclear location to the tips of the ldlF cells. Mutant phenotypes began to emerge within 2 h of temperature shift, the time required for the loss of detectable ε-COP, suggesting that the endocytic defects were not secondary to a block in the secretory pathway. Importantly, the mutant phenotypes were also corrected by transfection of wild-type ε-COP cDNA demonstrating that they directly or indirectly reflected the ε-COP defect. Taken together, the results suggest that ε-COP acts early in the endocytic pathway, most likely inhibiting the normal sorting and recycling functions of early endosomes.


2006 ◽  
Vol 17 (3) ◽  
pp. 1051-1064 ◽  
Author(s):  
John H. Willis ◽  
Edwin Munro ◽  
Rebecca Lyczak ◽  
Bruce Bowerman

Animal genomes each encode multiple highly conserved actin isoforms that polymerize to form the microfilament cytoskeleton. Previous studies of vertebrates and invertebrates have shown that many actin isoforms are restricted to either nonmuscle (cytoplasmic) functions, or to myofibril force generation in muscle cells. We have identified two temperature-sensitive and semidominant embryonic-lethal Caenorhabditis elegans mutants, each with a single mis-sense mutation in act-2, one of five C. elegans genes that encode actin isoforms. These mutations alter conserved and adjacent amino acids predicted to form part of the ATP binding pocket of actin. At the restrictive temperature, both mutations resulted in aberrant distributions of cortical microfilaments associated with abnormal and striking membrane ingressions and protrusions. In contrast to the defects caused by these dominant mis-sense mutations, an act-2 deletion did not result in early embryonic cell division defects, suggesting that additional and redundant actin isoforms are involved. Accordingly, we found that two additional actin isoforms, act-1 and act-3, were required redundantly with act-2 for cytoplasmic function in early embryonic cells. The act-1 and -3 genes also have been implicated previously in muscle function. We found that an ACT-2::GFP reporter was expressed cytoplasmically in embryonic cells and also was incorporated into contractile filaments in adult muscle cells. Furthermore, one of the dominant act-2 mutations resulted in uncoordinated adult movement. We conclude that redundant C. elegans actin isoforms function in both muscle and nonmuscle contractile processes.


Author(s):  
Yuedan Fan ◽  
Wenjuan Zou ◽  
Jia Liu ◽  
Umar Al-Sheikh ◽  
Hankui Cheng ◽  
...  

AbstractSensory modalities are important for survival but the molecular mechanisms remain challenging due to the polymodal functionality of sensory neurons. Here, we report the C. elegans outer labial lateral (OLL) sensilla sensory neurons respond to touch and cold. Mechanosensation of OLL neurons resulted in cell-autonomous mechanically-evoked Ca2+ transients and rapidly-adapting mechanoreceptor currents with a very short latency. Mechanotransduction of OLL neurons might be carried by a novel Na+ conductance channel, which is insensitive to amiloride. The bona fide mechano-gated Na+-selective degenerin/epithelial Na+ channels, TRP-4, TMC, and Piezo proteins are not involved in this mechanosensation. Interestingly, OLL neurons also mediated cold but not warm responses in a cell-autonomous manner. We further showed that the cold response of OLL neurons is not mediated by the cold receptor TRPA-1 or the temperature-sensitive glutamate receptor GLR-3. Thus, we propose the polymodal functionality of OLL neurons in mechanosensation and cold sensation.


Genetics ◽  
1993 ◽  
Vol 134 (1) ◽  
pp. 63-80 ◽  
Author(s):  
T A Weinert ◽  
L H Hartwell

Abstract In eucaryotes a cell cycle control called a checkpoint ensures that mitosis occurs only after chromosomes are completely replicated and any damage is repaired. The function of this checkpoint in budding yeast requires the RAD9 gene. Here we examine the role of the RAD9 gene in the arrest of the 12 cell division cycle (cdc) mutants, temperature-sensitive lethal mutants that arrest in specific phases of the cell cycle at a restrictive temperature. We found that in four cdc mutants the cdc rad9 cells failed to arrest after a shift to the restrictive temperature, rather they continued cell division and died rapidly, whereas the cdc RAD cells arrested and remained viable. The cell cycle and genetic phenotypes of the 12 cdc RAD mutants indicate the function of the RAD9 checkpoint is phase-specific and signal-specific. First, the four cdc RAD mutants that required RAD9 each arrested in the late S/G2 phase after a shift to the restrictive temperature when DNA replication was complete or nearly complete, and second, each leaves DNA lesions when the CDC gene product is limiting for cell division. Three of the four CDC genes are known to encode DNA replication enzymes. We found that the RAD17 gene is also essential for the function of the RAD9 checkpoint because it is required for phase-specific arrest of the same four cdc mutants. We also show that both X- or UV-irradiated cells require the RAD9 and RAD17 genes for delay in the G2 phase. Together, these results indicate that the RAD9 checkpoint is apparently activated only by DNA lesions and arrests cell division only in the late S/G2 phase.


2021 ◽  
Author(s):  
Hillary A. Miller ◽  
Shijiao Huang ◽  
Megan L. Schaller ◽  
Elizabeth S. Dean ◽  
Angela M. Tuckowski ◽  
...  

AbstractAn organism’s ability to perceive and respond to changes in its environment is crucial for its health and survival. Here we reveal how the most well-studied longevity intervention, dietary restriction (DR), acts in-part through a cell non-autonomous signaling pathway that is inhibited by the perception of attractive smells. Using an intestinal reporter for a key gene induced by DR but suppressed by attractive smells, we identify three compounds that block food perception in C. elegans, thereby increasing longevity as DR mimetics. These compounds clearly implicate serotonin and dopamine in limiting lifespan in response to food perception. We further identify an enteric neuron in this pathway that signals through the serotonin receptor 5-HT1A/ser-4 and dopamine receptor DRD2/dop-3. Aspects of this pathway are conserved in D. melanogaster and mammalian cells. Thus, blocking food perception through antagonism of serotonin or dopamine receptors is a plausible approach to mimic the benefits of dietary restriction.


2005 ◽  
Vol 16 (3) ◽  
pp. 1355-1365 ◽  
Author(s):  
Masaya Take-uchi ◽  
Yuri Kobayashi ◽  
Koutarou D. Kimura ◽  
Takeshi Ishihara ◽  
Isao Katsura

The defecation behavior of the nematode Caenorhabditis elegans is controlled by a 45-s ultradian rhythm. An essential component of the clock that regulates the rhythm is the inositol trisphosphate receptor in the intestine, but other components remain to be discovered. Here, we show that the flr-4 gene, whose mutants exhibit very short defecation cycle periods, encodes a novel serine/threonine protein kinase with a carboxyl terminal hydrophobic region. The expression of functional flr-4::GFP was detected in the intestine, part of pharyngeal muscles and a pair of neurons, but expression of flr-4 in the intestine was sufficient for the wild-type phenotype. Furthermore, laser killing of the flr-4–expressing neurons did not change the defecation phenotypes of wild-type and flr-4 mutant animals. Temperature-shift experiments with a temperature-sensitive flr-4 mutant suggested that FLR-4 acts in a cell-functional rather than developmental aspect in the regulation of defecation rhythms. The function of FLR-4 was impaired by missense mutations in the kinase domain and near the hydrophobic region, where the latter allele seemed to be a weak antimorph. Thus, a novel protein kinase with a unique structural feature acts in the intestine to increase the length of defecation cycle periods.


1984 ◽  
Vol 43 (3) ◽  
pp. 257-275 ◽  
Author(s):  
Donald A. R. Sinclair ◽  
Thomas A. Grigliatti ◽  
Thomas C. Kaufman

SUMMARYMinute(M) lesions exhibit a striking propensity for interacting with many different mutations. In the past, few attempts have been made to explain these diverse phenomena. This study describes a variety of temperature-sensitive (ts) interactions exhibited by the ts third chromosomeMinutemutationM(3)LS4Q-III(Q-III). Most of these interactions (i.e. those involvingvg, cp, Dl, DfdorLy) reflectQ-III-induced enhancement of the respective mutant phenotypes at the restrictive temperature. However,Q-IIIalso suppresses the extra-sex-comb phenotypes ofPcandMscat 29 °C and evokes lethal and bristle traits when combined withJ34eat the restrictive temperature. All of these interactions are characteristic of non-tsMinutelesions and thus they appear to be correlated with general physiological perturbations associated with theMsyndrome. In addition, our findings show that mutations that affect ribosome production and/or function, namelysu(f)ts67gandbbts−1, exhibit interactions comparable to those elicited byQ-III. Hence, in accordance with previous findings, we argue that most of theQ-IIIinteractions can be attributed to reduced translational capacity at the restrictive temperature. Finally, reciprocal temperature shift studies were used to delineate TSPs for interactions betweenQ-IIIandvg(mid to late second instar),cp(about mid-third instar),Dfd(early third instar) andDl(late second to mid third instar). We believe that these TSPs represent developmental intervals during which the respective gene products are utilized.


2010 ◽  
Vol 108 (1) ◽  
pp. 137-142 ◽  
Author(s):  
Kenji Kimura ◽  
Akatsuki Kimura

The centrosome is generally maintained at the center of the cell. In animal cells, centrosome centration is powered by the pulling force of microtubules, which is dependent on cytoplasmic dynein. However, it is unclear how dynein brings the centrosome to the cell center, i.e., which structure inside the cell functions as a substrate to anchor dynein. Here, we provide evidence that a population of dynein, which is located on intracellular organelles and is responsible for organelle transport toward the centrosome, generates the force required for centrosome centration in Caenorhabditis elegans embryos. By using the database of full-genome RNAi in C. elegans, we identified dyrb-1, a dynein light chain subunit, as a potential subunit involved in dynein anchoring for centrosome centration. DYRB-1 is required for organelle movement toward the minus end of the microtubules. The temporal correlation between centrosome centration and the net movement of organelle transport was found to be significant. Centrosome centration was impaired when Rab7 and RILP, which mediate the association between organelles and dynein in mammalian cells, were knocked down. These results indicate that minus end-directed transport of intracellular organelles along the microtubules is required for centrosome centration in C. elegans embryos. On the basis of this finding, we propose a model in which the reaction forces of organelle transport generated along microtubules act as a driving force that pulls the centrosomes toward the cell center. This is the first model, to our knowledge, providing a mechanical basis for cytoplasmic pulling force for centrosome centration.


1982 ◽  
Vol 28 (2) ◽  
pp. 261-264 ◽  
Author(s):  
Stephen M. King ◽  
Jeremy S. Hyams

When cultures of Schizosaccharomyces pombe cdc 2.33 were shifted to 25 °C, after 5 h at the restrictive temperature of 35 °C, cells entered cycles of synchronous division as judged by the appearance of peaks in the cell plate index at 1.5, 3, and 4.75 h. The timing and ultrastructural morphology of events occurring in such synchronous cultures were examined. Most cells underwent mitosis between 10 and 50 min after the temperature shift, with a maximal value after approximately 30 min. The ultrastructure of mitosis was consistent with previous descriptions of this process in wild-type cells.


2018 ◽  
Author(s):  
Yohei Kikuchi ◽  
Akatsuki Kimura

AbstractMicroinjection is a useful method in cell biology, with which exogenous substances are introduced into a cell in a location- and time-specific manner. The Caenorhabditis elegans embryo is an important model system for cell and developmental biology. Applying microinjection to the C. elegans embryo had been difficult due to the rigid eggshell surrounding the embryo. In 2013, microinjection method using a carbon-coated quartz needle for the C. elegans embryo was reported. To prepare the needle, unfortunately, special equipment is required and thus a limited number of researchers can use this method. In this study, we established a method for the microinjection of drugs, dyes, and microbeads into the C. elegans embryo using an uncoated glass needle that can be produced in a general laboratory. This method enabled us to easily detect cell lineage up to adult stages by injecting a fluorescent dye into a blastomere. We also found a cell-non-autonomous control mechanism of cell adhesion; specifically, the injection of an actin inhibitor into one cell at the 2-cell stage enhanced adhesion between daughter cells of the other cell. Our microinjection method is expected to be used for broad studies and could facilitate various discoveries using C. elegans.


Sign in / Sign up

Export Citation Format

Share Document