scholarly journals Memoirs: Studies in the Origin of Yolk. VI. The Crustacean Cogenesis

1931 ◽  
Vol s2-74 (296) ◽  
pp. 669-700
Author(s):  
DES RAJ BHATIA ◽  
VISHWA NATH

Palaemon lamarrei 1. In the oogonia there are no granules which can be assigned to the category of mitochondria. They appear for the first time in young oocytes in the form of a juxta-nuclear heap of granules or in the form of a horseshoe closely embracing the nuclear membrane. Soon they arrange themselves in the form of a circum-nuclear ring which gradually expands towards the periphery of the oocyte without breaking away from the nuclear membrane. At the same time the marginal mitochondria of the ring grow in size till ultimately they give rise to albuminous yolk, which therefore appears for the first time in the peripheral regions of the cytoplasm (cf. Oniscus, King, 1926, and Rana tigrina, Nath, 1931). 2. A yolk-forming mitochondrium first swells up; but it is still poorly fixed and stained with Bouin-haematoxylin, like the unchanged mitochondria. The process of growth continues and the swelling mitochondria now show an internal differentiation in the form of minute granules or very small vacuoles. Such mitochondria are only slightly better fixed and stained with Bouin-haematoxylin. Gradually they are completely shorn of their lipoidal constituents, condensing at the same time more and more of protein material. Ultimately they give rise to albuminous yolk, sensu stricto, which is fixed and stained excellently in Bouin-haematoxylin. 3. In the earliest oocytes the nucleolus throws out into the cytoplasm deeply basophil pieces which are more or less uniformly dispersed. Soon they disappear. Hereafter the nucleolar extrusions are very minute, but they remain restricted to the perinuclear region. They never wander into the general cytoplasm or at least into its peripheral regions where protein yolk appears for the first time. A direct origin of the yolk granule from the extrusion must, therefore, be ruled out. But the possibility of the extrusions going into solution and thus indirectly contributing towards yolk cannot be eliminated. 4. Although the mitochondria can be easily observed in the fresh cover-slip preparations of young oocytes, the Golgi elements cannot be demonstrated unless the material is osmicated for at least twenty-two hours. Chemically the Golgi elements are lipoidal (fat-like). They are not stainable with neutral red. 5. In the oogonia and the earliest oocytes the Golgi elements exist in the form of vesicles, each vesicle showing a thick osmiophilic cortex and a central osmiophobic area. 6. During oogenesis many vesicles grow enormously in size, store up neutral fats inside them, and give rise to the fatty yolk as in Lithobius, spider, Otostigmus, Luciola, cockroach, Dysdercus, and Ophiocephalus (Nath, and Nath and collaborators), in Oniscus (King), in saw-flies (Gresson), and in Helix (Brambell). 7. The vacuolar system is absent in the prawn and also in the crab. Paratalphusa spinigera. 8. The Golgi elements of the crab behave exactly like those of the prawn, but the mitochondria, on the other hand, remain inactive and have no visible relationship with yolk formation. 9. In the crab also there are well-marked nucleolar extrusions. As in the prawn a prominent circum-nuclear ring of these granules is established early in oogenesis. But, unlike the prawn, granules from this ring continue to wander into the cytoplasm at the periphery of which they directly grow into the albuminous yolk.

1931 ◽  
Vol s2-74 (294) ◽  
pp. 257-274
Author(s):  
R.A. R. GRESSON

1. The Golgi vacuoles and fatty yolk-formation in Peri-planeta orientalis were studied by means of Mann-Kopsch, Kolatschev, 2 per cent, osmic acid and neutral red preparations. 2. The Golgi vacuoles of the young oocytes are situated in the vicinity of the nucleus; later they pass to the periphery of the cell. In the older oocytes, towards the posterior end of the ovarioles, they become evenly distributed in the ooplasm, store up fat, increase greatly in size, and give rise to the fatty yolkspheres. In the older oocytes they darken much more rapidly in 2 per cent, osmic acid. 3. In neutral red preparations clear non-stained vacuoles are seen to occupy similar positions to those of the dark bodies of the osmic preparations; on introducing a few drops of 2 per cent, osmic acid under the cover slip the vacuoles develop an osmophilic rim. These Golgi vacuoles are not stained by neutral red. 4. In 2 per cent, osmic acid preparations the Golgi vacuoles are seen to consist of an osmophilic rim and a central clear substance. 5. The Golgi vacuoles of the follicle-cells are similar to those of the egg, except that they do not increase greatly in size and are not so rapidly darkened in 2 per cent, osmic acid. 6. The nucleoli of the early oocytes are spherical in shape and are amphiphil or slightly basophil in staining reaction; they may contain small vacuoles. In slightly older oocytes the nucleoli are non-vacuolated; they become strongly basophil, irregular in outline, and, at the same time, give rise to emissions which pass through the nuclear membrane to the ooplasm, where they ultimately disappear. In a certain few oocytes the nucleolus was seen to have broken up into several masses, some of the latter, in all probability, fragmenting to form nucleolar extrusions. In a certain oocyte one of the masses was observed to be vacuolated before the first type of extrusion had ceased. 7. In the more highly developed oocytes the first type of nucleolar emission ceases, and the nucleolus becomes more spherical in outline. Numerous vacuoles appear which give origin to nucleolar extrusions. The latter become vacuolated, either before extrusion through the nuclear membrane, or later in the ooplasm. 8. The second type of nucleolar extrusions pass to the periphery of the egg. Later they become evenly distributed in the ooplasm, where they fragment to forin homogeneous granules. The latter form clear spheres (Kolatschev material) which rapidly increase in size to form the albuminous yolk-globules. 9. Chromatin was not observed in the oocyte nuclei, nucleoli, or nucleolar extrusions (Feulgen's technique). The chromatin of the follicle-cells is in the form of granules connected by threads (which give the chromatin reaction). The chromatin of the follicular epithelial-cells was observed as granules scattered through the nuclei. 10. Bacteroid forms were observed in the ooplasm at the periphery of the older oocytes. 11. The method of yolk-formation is similar to that of Peri-planeta americanaas described by Nath and Piare Mohan. 12. The writer's conclusions regarding the shape and character of the Golgi vacuoles agree with tne findings of Nath and his co-workers and with the former conclusions of the present writer for oocyte Golgi vacuoles.


1991 ◽  
Vol 123 (3) ◽  
pp. 501-558 ◽  
Author(s):  
Ian M. Smith

AbstractMorphological, life history, and distributional data are presented for North American species of the subgenus Stygomomonia (sensu stricto) Szalay, 1943. Adults of the seven previously recognized species are redescribed, and deutonymphs of five of these species are described for the first time. Two species, S. (s.s.) neomexicana Cook and S. (s.s.) occidentalis Cook are substantially revised on the basis of an examination of the types and extensive series of newly collected specimens. Three new species are described, S. (s.s.) californiensis on the basis of deutonymphs and adults, and S. (s.s.) imamurai and S. (s.s.) cooki on the basis of adults. A new diagnosis of the subgenus is proposed and discussed, the relationships of the various species are discussed, and a key to deutonymphs and adults of North American species is presented. New distributional data are presented for all species, and dispersal patterns from Pleistocene refugia are discussed.


2021 ◽  
Vol 15 (6) ◽  
pp. e0009541
Author(s):  
Georgina Meza-Radilla ◽  
Violeta Larios-Serrato ◽  
Rigoberto Hernández-Castro ◽  
J. Antonio Ibarra ◽  
Paulina Estrada-de los Santos

Background Burkholderia sensu stricto is comprised mainly of opportunistic pathogens. This group is widely distributed in the environment but is especially important in clinical settings. In Mexico, few species have been correctly identified among patients, most often B. cepacia is described. Methodology/Principal findings In this study, approximately 90 strains identified as B. cepacia with the VITEK2 system were isolated from two medical centers in Mexico City and analyzed by MLSA, BOX-PCR and genome analysis. The initial identification of B. cepacia was confirmed for many strains, but B. contaminans, B. multivorans and B. vietnamiensis were also identified among clinical strains for the first time in hospitals in Mexico. Additionally, the presence of B. pseudomallei was confirmed, and a novel species within the B. cepacia complex was documented. Several strains misidentified as B. cepacia actually belong to the genera Pseudomonas, Stenotrophomonas and Providencia. Conclusions/Significance The presence of different Burkholderia species in Mexico was confirmed. Correct identification of Burkholderia species is important to provide accurate treatment for immunosuppressed patients.


2015 ◽  
Vol 46 (4) ◽  
pp. 587-598 ◽  
Author(s):  
E. Lewandowska ◽  
M. Charzyńska

About 90 per cent of <i>Tradescantia bracteata</i> pollen germinates <i>in vitro</i> after 15 min. Mitosis starts in the pollen tube after about 3 h. The mitotic trans-formations of chromosomes within the generative nucleus are not synchronized. They involve succesively the linearly arranged chromosomes in the elongated generative nucleus. In metaphase the chromosomes are arranged tandem-like linearly along the pollen tube. The chromatides translocate in anaphase from various distances to the poles in a plane parallel to the metaphase plate. This suggests that chromosomes have individual mitotic spindles and that coordination of the chromosome transformations in the generative cell is much less strict than in a typical somatic mitosis. Starch is the storage material of pollen grains. In the vegetative cytoplasm of mature pollen grains minute reddish-orange vesicular structures are visible after staining with neutral red. They do not fuse with the vacuoles proper arising in germinating pollen grains to form the vacuolar system of the pollen tube.


2013 ◽  
Vol 89 (1) ◽  
pp. 1-8 ◽  
Author(s):  
S.V. Soriano ◽  
N.B. Pierangeli ◽  
L.A. Pianciola ◽  
M. Mazzeo ◽  
L.E. Lazzarini ◽  
...  

AbstractCystic echinococcosis caused by Echinococcus granulosus sensu lato is one of the most important helminth zoonoses in the world; it affects both humans and livestock. The disease is endemic in Argentina and highly endemic in the province of Neuquén. Considerable genetic and phenotypic variation has been demonstrated in E. granulosus, and ten different genotypes (G1–G10) have been identified using molecular tools. Echinococcus granulosus sensu lato may be considered a species complex, comprised of E. granulosus sensu stricto (G1–G3), E. equinus (G4), E. ortleppi (G5) and E. canadensis (G6–G10). In endemic areas, the characterization of cystic echinococcosis molecular epidemiology is important in order to apply adequate control strategies. A cut-off value for larval large hook total length to distinguish E. granulosus sensu stricto isolates from those produced by other species of the complex was defined for the first time. Overall, 1780 larval hooks of 36 isolates obtained from sheep (n= 11, G1), goats (n= 10, G6), cattle (n= 5, G6) and pigs (n= 10, G7) were analysed. Validation against molecular genotyping as gold standard was carried out using the receiver operating characteristic (ROC) curve analysis. The optimum cut-off value was defined as 26.5 μm. The proposed method showed high sensitivity (97.8%) and specificity (91.1%). Since in most endemic regions the molecular epidemiology of echinococcosis includes the coexistence of the widely distributed E. granulosus sensu stricto G1 strain and other species of the complex, this technique could be useful as a quick and economical tool for epidemiological and surveillance field studies, when fertile cysts are present.


2017 ◽  
Vol 22 (1) ◽  
pp. 28 ◽  
Author(s):  
Sebastián Muñoz-Leal ◽  
Ricardo A. Dias ◽  
Carlos R. Abrahão ◽  
Marcelo B. Labruna

Ornithodoros capensis sensu lato (s. l.) is a worldwide-distributed group of soft ticks that parasitize birds in insular and continental lands. It is currently composed of 11 morphologically closely related species. Several viral and bacterial pathogens, and particularly Coxiella-like endosymbiont organisms have been described coexisting with ticks of this group. Since it last report in 1983, the presence of O. capensis s. l. in Brazil has remained undocumented. By a morphological analysis of larvae and a molecular characterization of ticks and Coxiella genes we describe for the first time O. capensis sensu stricto in Brazil from specimens collected on Queimada Grande Island, in São Paulo state.


1963 ◽  
Vol s3-104 (65) ◽  
pp. 69-73
Author(s):  
B. R. SESHACHAR ◽  
R. P. NAYYAR

Purely lipid bodies have been encountered inside the nucleus of early oocytes of Heteropneustes fossilis. These are mixtures of phospholipids and triglycerides. They occur independently of the nucleoli. With the growth of oocyte they increase in size and number and move towards the nuclear membrane. During later stages they diffuse out into the cytoplasm presumably to take part in yolk formation.


1925 ◽  
Vol s2-69 (274) ◽  
pp. 291-316
Author(s):  
LESLIE A. HARVEY

1. The yolk-nucleus is merely a mass of mitochondria. 2. The mitochondria arise as a cap of threads over the nucleus, and this cap grows in size and density, migrates away from the nuclear membrane and breaks up into its component mitochondrial threads. These threads become evenly spread throughout the cytoplasm of the cell. 3. The mitochondria are not clearly defined in the very young oogonia. 4. The Golgi apparatus consists of numbers of Golgi elements lying separate in the cytoplasm. There is never any attempt at concentration of these elements round one central mass. 5. The Golgi elements are probably little platelets or spheroids somewhat resembling blood corpuscles in shape. They are not rods. As fixed by Da Fano technique, each element is a little plate with a very lightly impregnating centre and a very heavily impregnating rim. 6. The Golgi elements may probably arise from the cytoplasm. 7. The nucleus contains two nucleoli; an early arising karyosome, homogeneous and solid in structure, and a plasmo some arising later This plasmosome is liquid in consistency and contains an argentophil core. The karyosome disappears before the oocyte is half grown, but the plasmosome remains in the nucleus while the egg remains in the ovary. 8. No visible nucleolar extrusions into the cytoplasm were observed. 9. Yolk probably arises from the cytoplasm; no direct metamorphosis of either mitochondria, Golgi apparatus, or nucleolus into yolk was observed.


Zootaxa ◽  
2010 ◽  
Vol 2566 (1) ◽  
pp. 49 ◽  
Author(s):  
ARNAUD FAILLE ◽  
CHARLES BOURDEAU ◽  
JAVIER FRESNEDA

A new trechine species Aphaenops parvulus sp. n. (Carabidae, Trechini) is described from Esjamundo cave in the Pyrenees of Huesca, Spain. The new species belongs to the subgenus Aphaenops (sensu stricto), but differs from its closest congeners by the small size—it is the smallest species of the group—and characters of the aedeagus. Molecular data based on fragments of a mitochondrial (COI) and a nuclear (LSU) genes recognised Aphaenops parvulus sp. n. as a sister taxon to A. eskualduna Coiffait. Aphaenops eskualduna is reported from Spain with precision for the first time.


2019 ◽  
Vol 7 (4) ◽  
pp. 64 ◽  
Author(s):  
Forson ◽  
Tetteh-Quarcoo ◽  
Ahenkorah ◽  
Aryee ◽  
Okine ◽  
...  

This study reports (for the first time) the staining ability of vital (0.4% trypan blue and 1% neutral red) and fluorescent (Hoechst 33258) dyes to differentiate between live and dead Schistosoma haematobium (S. haematobium) eggs in human urine samples. Since S. haematobium egg is important in disease pathology, diagnosis, transmission, and drug development research, it is essential to be able to easily distinguish live eggs from dead ones. Staining is considered a way of enhancing the identification of live and dead eggs. Urine samples from school children were examined for the presence of S. haematobium eggs. Vital and fluorescent dyes were used to stain the samples that contained S. haematobium eggs, after which they were observed using light and fluorescent microscopes, respectively. The Hoechst 33258 provided a good staining outcome for differentiation between live and dead eggs, followed by 0.4% Trypan blue. Regarding the 1% neutral red stain, even though it provided some evidence of which egg was alive or dead, the distinction was not very clear; therefore, it could be useful when used in combination with other stains for egg viability determination. The benefits of this study will include assessing the effect of drugs on S. haematobium eggs in Schistosomiasis research.


Sign in / Sign up

Export Citation Format

Share Document