Structure, mechanism and regulation of the clathrin-coated vesicle and yeast vacuolar H(+)-ATPases

2000 ◽  
Vol 203 (1) ◽  
pp. 71-80 ◽  
Author(s):  
M. Forgac

The vacuolar H(+)-ATPases (or V-ATPases) are a family of ATP-dependent proton pumps that carry out acidification of intracellular compartments in eukaryotic cells. This review is focused on our work on the V-ATPases of clathrin-coated vesicles and yeast vacuoles. The coated-vesicle V-ATPase undergoes trafficking to endosomes and synaptic vesicles, where it functions in receptor recycling and neurotransmitter uptake, respectively. The yeast V-ATPase functions to acidify the central vacuole and is necessary both for protein degradation and for coupled transport processes across the vacuolar membrane. The V-ATPases are multisubunit complexes composed of two functional domains. The V(1) domain is a 570 kDa peripheral complex composed of eight subunits of molecular mass 73–14 kDa (subunits A-H) that is responsible for ATP hydrolysis. The V(o) domain is a 260 kDa integral complex composed of five subunits of molecular mass 100-17 kDa (subunits a, d, c, c' and c”) that is responsible for proton translocation. To explore the function of individual subunits in the V-ATPase complex as well as to identify residues important in proton transport and ATP hydrolysis, we have employed a combination of chemical modification, site-directed mutagenesis and in vitro reassembly. A central question concerns the mechanism by which vacuolar acidification is controlled in eukaryotic cells. We have proposed that disulfide bond formation between conserved cysteine residues at the catalytic site of the V-ATPase plays an important role in regulating V-ATPase activity in vivo. Other regulatory mechanisms that are discussed include reversible dissociation and reassembly of the V-ATPase complex, changes in the tightness of coupling between proton transport and ATP hydrolysis, differential targeting of V-ATPases within the cell and control of the Cl(−) conductance that is necessary for vacuolar acidification.

2014 ◽  
Vol 25 (8) ◽  
pp. 1251-1262 ◽  
Author(s):  
Sheena Claire Li ◽  
Theodore T. Diakov ◽  
Tao Xu ◽  
Maureen Tarsio ◽  
Wandi Zhu ◽  
...  

Vacuolar proton-translocating ATPases (V-ATPases) are highly conserved, ATP-driven proton pumps regulated by reversible dissociation of its cytosolic, peripheral V1 domain from the integral membrane Vo domain. Multiple stresses induce changes in V1-Vo assembly, but the signaling mechanisms behind these changes are not understood. Here we show that certain stress-responsive changes in V-ATPase activity and assembly require the signaling lipid phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2). V-ATPase activation through V1-Vo assembly in response to salt stress is strongly dependent on PI(3,5)P2 synthesis. Purified Vo complexes preferentially bind to PI(3,5)P2 on lipid arrays, suggesting direct binding between the lipid and the membrane sector of the V-ATPase. Increasing PI(3,5)P2 levels in vivo recruits the N-terminal domain of Vo-sector subunit Vph1p from cytosol to membranes, independent of other subunits. This Vph1p domain is critical for V1-Vo interaction, suggesting that interaction of Vph1p with PI(3,5)P2-containing membranes stabilizes V1-Vo assembly and thus increases V-ATPase activity. These results help explain the previously described vacuolar acidification defect in yeast fab1∆ and vac14∆ mutants and suggest that human disease phenotypes associated with PI(3,5)P2 loss may arise from compromised V-ATPase stability and regulation.


Author(s):  
Michael C. Jaskolka ◽  
Samuel R. Winkley ◽  
Patricia M. Kane

The yeast RAVE (Regulator of H+-ATPase of Vacuolar and Endosomal membranes) complex and Rabconnectin-3 complexes of higher eukaryotes regulate acidification of organelles such as lysosomes and endosomes by catalyzing V-ATPase assembly. V-ATPases are highly conserved proton pumps consisting of a peripheral V1 subcomplex that contains the sites of ATP hydrolysis, attached to an integral membrane Vo subcomplex that forms the transmembrane proton pore. Reversible disassembly of the V-ATPase is a conserved regulatory mechanism that occurs in response to multiple signals, serving to tune ATPase activity and compartment acidification to changing extracellular conditions. Signals such as glucose deprivation can induce release of V1 from Vo, which inhibits both ATPase activity and proton transport. Reassembly of V1 with Vo restores ATP-driven proton transport, but requires assistance of the RAVE or Rabconnectin-3 complexes. Glucose deprivation triggers V-ATPase disassembly in yeast and is accompanied by binding of RAVE to V1 subcomplexes. Upon glucose readdition, RAVE catalyzes both recruitment of V1 to the vacuolar membrane and its reassembly with Vo. The RAVE complex can be recruited to the vacuolar membrane by glucose in the absence of V1 subunits, indicating that the interaction between RAVE and the Vo membrane domain is glucose-sensitive. Yeast RAVE complexes also distinguish between organelle-specific isoforms of the Vo a-subunit and thus regulate distinct V-ATPase subpopulations. Rabconnectin-3 complexes in higher eukaryotes appear to be functionally equivalent to yeast RAVE. Originally isolated as a two-subunit complex from rat brain, the Rabconnectin-3 complex has regions of homology with yeast RAVE and was shown to interact with V-ATPase subunits and promote endosomal acidification. Current understanding of the structure and function of RAVE and Rabconnectin-3 complexes, their interactions with the V-ATPase, their role in signal-dependent modulation of organelle acidification, and their impact on downstream pathways will be discussed.


2000 ◽  
Vol 44 (9) ◽  
pp. 2349-2355 ◽  
Author(s):  
Patricia Soteropoulos ◽  
Tanya Vaz ◽  
Rosaria Santangelo ◽  
Padmaja Paderu ◽  
David Y. Huang ◽  
...  

ABSTRACT The Cryptococcus neoformans PMA1 gene, encoding a plasma membrane H+-ATPase, was isolated from a genomic DNA library of serotype A strain ATCC 6352. An open reading frame of 3,380 nucleotides contains six introns and encodes a predicted protein consisting of 998 amino acids with a molecular mass of approximately 108 kDa. Plasma membranes were isolated, and the H+-ATPase was shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be slightly larger than the S. cerevisiaeH+-ATPase, consistent with its predicted molecular mass. The plasma membrane-bound enzyme exhibited a pH 6.5 optimum for ATP hydrolysis, Km and V maxvalues of 0.5 mM and 3.1 μmol mg−1 min−1, respectively, and an apparent Ki for vanadate inhibition of 1.6 μM. ATP hydrolysis in plasma membranes and medium acidification by whole cells were inhibited by ebselen, a nonspecific H+-ATPase antagonist which was also fungicidal. The predicted C. neoformans protein is 35% identical to proton pumps of both pathogenic and nonpathogenic fungi but exhibits more than 50% identity to PMA1 genes from plants. Collectively, this study provides the basis for establishing the CryptococcusH+-ATPase as a viable target for antifungal drug discovery.


1992 ◽  
Vol 172 (1) ◽  
pp. 155-169
Author(s):  
M Forgac

The coated vesicle V-ATPase plays an important role in both receptor-mediated endocytosis and intracellular membrane traffic by providing the acidic environment required for ligand-receptor dissociation and receptor recycling. The coated vesicle V-ATPase is a macromolecular complex of relative molecular mass 750,000 composed of nine subunits arranged in two structural domains. The peripheral V1 domain, which has a relative molecular mass of 500,000, has the subunit structure 73(3)58(3)40(1)34(1)33(1) and possesses all the nucleotide binding sites of the V-ATPase. The integral Vo domain of relative molecular mass 250,000 has a subunit composition of 100(1)38(1)19(1)17(6) and possesses the pathway for proton conduction across the membrane. Reassembly studies have allowed us to probe the role of specific subunits in the V-ATPase complex while chemical labeling studies have allowed us to identify specific residues which play a critical role in catalysis. From both structural analysis and sequence homology, the vacuolar-type H(+)-ATPases resemble the F-type H(+)-ATPases. Unlike the F1 and Fo domains of the F-type ATPases, however, the V1 and Vo domains do not appear to function independently. The possible relevance of these observations to the regulation of vacuolar acidification is discussed.


2000 ◽  
Vol 203 (1) ◽  
pp. 89-95 ◽  
Author(s):  
N. Nelson ◽  
N. Perzov ◽  
A. Cohen ◽  
K. Hagai ◽  
V. Padler ◽  
...  

The vacuolar H(+)-ATPase (V-ATPase) is one of the most fundamental enzymes in nature. It functions in almost every eukaryotic cell and energizes a wide variety of organelles and membranes. In contrast to F-ATPases, whose primary function in eukaryotic cells is to form ATP at the expense of the proton-motive force, V-ATPases function exclusively as ATP-dependent proton pumps. The proton-motive force generated by V-ATPases in organelles and across plasma membranes of eukaryotic cells is utilized as a driving force for numerous secondary transport processes. The enzyme is also vital for the proper functioning of endosomes and the Golgi apparatus. In contrast to yeast vacuoles, which maintain an internal pH of approximately 5. 5, it is believed that the vacuoles of lemon fruit may have a pH as low as 2. Similarly, some brown and red algae maintain an internal pH as low as 1 in their vacuoles. It was yeast genetics that allowed the identification of the special properties of individual subunits and the discovery of the factors that are involved in V-ATPase biogenesis and assembly. Null mutations in genes encoding V-ATPase subunits of Saccharomyces cerevisiae result in a phenotype that is unable to grow at high pH and is sensitive to high and low metal-ion concentrations. Treatment of these null mutants with ethyl methanesulphonate causes mutations that suppress the V-ATPase null phenotype, and these cells are able to grow at pH 7.5. The suppressor mutants were denoted as svf (Suppressor of V-ATPase Function). The svf mutations are recessive: crossing the svf mutants with their corresponding V-ATPase null mutants resulted in diploid strains that were not able to grow at pH 7.5. A novel gene family in which null mutations cause pleiotropic effects on metal-ion resistance or on the sensitivity and distribution of membrane proteins in different targets was discovered. We termed this gene family VTC (Vacuolar Transporter Chaperon) and discovered four genes in S. cerevisiae that belong to the family. Inactivation of one of them, VTC1, in the background of V-ATPase null mutations resulted in an svf phenotype that was able to grow at pH 7.5. Apparently, Vtc1p is one of a few membrane organizers that determine the relative amounts of different membrane proteins in the various cellular membranes. We utilize the numerous yeast mutants generated in our laboratory to identify the specific organelle whose acidification is vital. The interaction between V-ATPase and the secretory pathway is investigated.


1999 ◽  
Vol 79 (2) ◽  
pp. 361-385 ◽  
Author(s):  
Nathan Nelson ◽  
William R. Harvey

The vacuolar H+-ATPase (V-ATPase) is one of the most fundamental enzymes in nature. It functions in almost every eukaryotic cell and energizes a wide variety of organelles and membranes. V-ATPases have similar structure and mechanism of action with F-ATPase and several of their subunits evolved from common ancestors. In eukaryotic cells, F-ATPases are confined to the semi-autonomous organelles, chloroplasts, and mitochondria, which contain their own genes that encode some of the F-ATPase subunits. In contrast to F-ATPases, whose primary function in eukaryotic cells is to form ATP at the expense of the proton-motive force (pmf), V-ATPases function exclusively as ATP-dependent proton pumps. The pmf generated by V-ATPases in organelles and membranes of eukaryotic cells is utilized as a driving force for numerous secondary transport processes. The mechanistic and structural relations between the two enzymes prompted us to suggest similar functional units in V-ATPase as was proposed to F-ATPase and to assign some of the V-ATPase subunit to one of four parts of a mechanochemical machine: a catalytic unit, a shaft, a hook, and a proton turbine. It was the yeast genetics that allowed the identification of special properties of individual subunits and the discovery of factors that are involved in the enzyme biogenesis and assembly. The V-ATPases play a major role as energizers of animal plasma membranes, especially apical plasma membranes of epithelial cells. This role was first recognized in plasma membranes of lepidopteran midgut and vertebrate kidney. The list of animals with plasma membranes that are energized by V-ATPases now includes members of most, if not all, animal phyla. This includes the classical Na+absorption by frog skin, male fertility through acidification of the sperm acrosome and the male reproductive tract, bone resorption by mammalian osteoclasts, and regulation of eye pressure. V-ATPase may function in Na+uptake by trout gills and energizes water secretion by contractile vacuoles in Dictyostelium. V-ATPase was first detected in organelles connected with the vacuolar system. It is the main if not the only primary energy source for numerous transport systems in these organelles. The driving force for the accumulation of neurotransmitters into synaptic vesicles is pmf generated by V-ATPase. The acidification of lysosomes, which are required for the proper function of most of their enzymes, is provided by V-ATPase. The enzyme is also vital for the proper function of endosomes and the Golgi apparatus. In contrast to yeast vacuoles that maintain an internal pH of ∼5.5, it is believed that the vacuoles of lemon fruit may have a pH as low as 2. Similarly, some brown and red alga maintain internal pH as low as 0.1 in their vacuoles. One of the outstanding questions in the field is how such a conserved enzyme as the V-ATPase can fulfill such diverse functions.


2021 ◽  
Author(s):  
Qinghua Lu ◽  
Xiangwen Luo ◽  
Xiao Yang ◽  
Tong Zhou ◽  
Yu Zhang ◽  
...  

Abstract Background: Vacuolar ATPases (v-ATPases) are proton pumps for proton translocation across membranes that utilize energy derived from ATP hydrolysis; Previous research revealed Osv-ATPases mediates phytohormes levels and resistance in rice. Osv-ATPase subunit d (Osv-ATPase d) is part of an integral, membrane-embedded V0 complex of V-ATPases complex, whether Osv-ATPase d involves in phytohormes biosynthesis and resistance in rice remains unknown.Finding: The knockout mutant line (line 5) of Osv-ATPase d was generated using the CRISPR/Cas9 system, mutation of Osv-ATPase d did not show any detrimental effect on plant growth or yield productivity. Transcriptomic results showed Osv-ATPase d probably involved in mediating the biosynthesis of plant hormones and resistance in rice. Mutation of Osv-ATPase d significantly increased JA and ABA biosynthesis than wild type. Compared to wild type, mutation of Osv-ATPase d increased the resistance against Southern rice black-streaked dwarf virus (SRBSDV), however, decreased the resistance against Rice stripe virus (RSV) in rice. Conclusion: Taken together, our data reveal the Osv-ATPase d mediates phytohormone biosynthesis and virus resistance in rice, which can be selected as a potential target for resistance breeding in rice.


1998 ◽  
Vol 64 (5) ◽  
pp. 1650-1656 ◽  
Author(s):  
Peter W. Coschigano ◽  
Thomas S. Wehrman ◽  
L. Y. Young

ABSTRACT The denitrifying strain T1 is able to grow with toluene serving as its sole carbon source. Two mutants which have defects in this toluene utilization pathway have been characterized. A clone has been isolated, and subclones which contain tutD and tutE, two genes in the T1 toluene metabolic pathway, have been generated. ThetutD gene codes for an 864-amino-acid protein with a calculated molecular mass of 97,600 Da. The tutE gene codes for a 375-amino-acid protein with a calculated molecular mass of 41,300 Da. Two additional small open reading frames have been identified, but their role is not known. The TutE protein has homology to pyruvate formate-lyase activating enzymes. The TutD protein has homology to pyruvate formate-lyase enzymes, including a conserved cysteine residue at the active site and a conserved glycine residue that is activated to a free radical in this enzyme. Site-directed mutagenesis of these two conserved amino acids shows that they are also essential for the function of TutD.


2021 ◽  
Vol 8 ◽  
Author(s):  
Sabine Panzer ◽  
Chong Zhang ◽  
Tilen Konte ◽  
Celine Bräuer ◽  
Anne Diemar ◽  
...  

Aureobasidium pullulans is a black fungus that can adapt to various stressful conditions like hypersaline, acidic, and alkaline environments. The genome of A. pullulans exhibits three genes coding for putative opsins ApOps1, ApOps2, and ApOps3. We heterologously expressed these genes in mammalian cells and Xenopus oocytes. Localization in the plasma membrane was greatly improved by introducing additional membrane trafficking signals at the N-terminus and the C-terminus. In patch-clamp and two-electrode-voltage clamp experiments, all three proteins showed proton pump activity with maximal activity in green light. Among them, ApOps2 exhibited the most pronounced proton pump activity with current amplitudes occasionally extending 10 pA/pF at 0 mV. Proton pump activity was further supported in the presence of extracellular weak organic acids. Furthermore, we used site-directed mutagenesis to reshape protein functions and thereby implemented light-gated proton channels. We discuss the difference to other well-known proton pumps and the potential of these rhodopsins for optogenetic applications.


Sign in / Sign up

Export Citation Format

Share Document