Chemolithoheterotrophy in a metazoan tissue: thiosulfate production matches ATP demand in ciliated mussel gills

2001 ◽  
Vol 204 (21) ◽  
pp. 3755-3764
Author(s):  
Jeannette E. Doeller ◽  
Manfred K. Grieshaber ◽  
David W. Kraus

SUMMARY The ribbed mussel Geukensia demissa inhabits sulfide-rich coastal sediments with a distribution that suggests a preference for exposure to sulfide. Although sulfide is a respiratory poison, it is also a potent reductant. Geukensia demissa gill mitochondria can use sulfide as a respiratory substrate for ATP production, and the gills of this species exhibit sulfide-supported oxygen consumption that matches the energy demand of ciliary beating. Here, we demonstrate (i) that the major product of G. demissa gill sulfide oxidation is thiosulfate and (ii) that the rate of sulfide oxidation also matches the cellular energy demand, resulting in a ratio near unity of oxygen consumed to sulfide oxidized at both low and high ciliary beat frequencies. A value for this ratio of unity is consistent with electrons from sulfide oxidation entering the mitochondrial electron transport chain. In the gills of the blue mussel Mytilus edulis from sulfide-free conditions, this ratio is 3–5 times higher, indicating an uncoupling of oxygen consumption from sulfide oxidation. Whereas M. edulis gills exhibit anaerobic metabolism during sulfide exposure, G. demissa gills do not, indicating a difference in sulfide tolerance between the two mussel species.

2000 ◽  
Vol 203 (14) ◽  
pp. 2209-2218 ◽  
Author(s):  
V. Parrino ◽  
D.W. Kraus ◽  
J.E. Doeller

The ribbed mussel Geukensia demissa inhabits intertidal Spartina grass marshes characterized by sulfide-rich sediments. Sulfide poisons aerobic respiration, and G. demissa may cope in this seemingly inhospitable environment by oxidizing sulfide in gill mitochondria. Well-coupled mitochondria isolated from G. demissa gills were used to investigate sulfide oxidation and ATP synthesis. State 3 respiration, maximally stimulated by 5 micromol l(−)(1) sulfide with a P/O ratio of 0.89 and a respiratory control ratio (RCR) of 1.40, remained refractory to sulfide at higher concentrations except in the presence of salicylhydroxamic acid (SHAM), an inhibitor of alternative oxidases. Sulfide-stimulated ATP production was 3–5 times greater than that stimulated by malate and succinate, respectively, giving an ATP/sulfide ratio of 0.63. The inhibition of sulfide-stimulated respiration and ATP production by the complex III inhibitors myxothiazol and antimycin A, respectively, suggests that electrons enter the electron transport chain before complex III. Combined with in vivo evidence for electron entry at cytochrome c, these data suggest that more than one type of sulfide-oxidizing enzyme may function in G. demissa gills. The SHAM-sensitive pathway of electron flux may be a critical component of a physiological strategy to tolerate sulfide. We conclude that G. demissa exploits the energy available from its reduced environment by using sulfide as a respiratory substrate for cellular ATP production.


1999 ◽  
Vol 202 (14) ◽  
pp. 1953-1961 ◽  
Author(s):  
J.E. Doeller ◽  
B.K. Gaschen ◽  
V. Parrino ◽  
D.W. Kraus

Hydrogen sulfide, a common constituent of marine intertidal sediments, is both a potent toxin of aerobic cellular respiration and an electron-rich molecule used by some prokaryotic organisms as a source of energy. In ciliated gills from Geukensia demissa, a marine mussel from sulfide-rich sediments, sulfide oxidation supports cellular work. Evidence for this comes from measurements of ciliary beat frequency (fCB) as a measure of ATP turnover rate, the rate of gill oxygen consumption (m_dot O2) as a measure of ATP production rate, and mitochondrial cytochrome redox state as an indicator of the path of electron flow. Results from experiments performed in the presence and absence of the mitochondrial complex III inhibitor antimycin A to limit endogenous carbon substrate oxidation showed that exposure to sulfide stimulated oxygen consumption and ciliary beating, with cytochrome c being the dominant reduced species. These results, along with the resultant fCB/ m_dot O2 ratio, are qualitatively and quantitatively consistent with the hypothesis that electrons from sulfide oxidation support mitochondrial ATP production. We propose that Geukensia demissa gills use sulfide as a respiratory substrate when given the choice and thus function metabolically as facultative chemolithoheterotrophs. Similar conclusions could not be drawn for the ciliated gills from Mytilus edulis, a marine mussel from aerated habitats, or for the ciliated lungs from the phylogenetically distinct leopard frog Rana pipiens.


2020 ◽  
Author(s):  
Pâmela Kakimoto ◽  
Antonio Zorzano ◽  
Alicia J. Kowaltowski

AbstractPalmitic acid is the most abundant saturated fatty acid in human serum. In cell culture systems, palmitate overload is considered a toxic stimulus, and promotes lipid accumulation, insulin resistance, endoplasmic reticulum stress, oxidative stress, as well as cell death. An increased supply of fatty acids has also been shown to change the predominant form of the mitochondrial network, although the metabolic effects of this change are still unclear. Here, we aimed to uncover the early bioenergetic outcomes of lipotoxicity. We incubated hepatic PLC/PRF/5 cells with palmitate conjugated to BSA and followed real-time oxygen consumption and extracellular acidification for 6 hours. Palmitate increased glycolysis as soon as 1 hour after the stimulus, while oxygen consumption was not disturbed, despite overt mitochondrial fragmentation and cellular reductive imbalance. Palmitate only induced mitochondrial fragmentation if glucose and glutamine were available, while glycolytic enhancement did not require glutamine, showing it is not dependent on morphological changes. NAD(P)H levels were significantly abrogated in palmitate-treated cells. Knockdown of the mitochondrial NAD(P) transhydrogenase or addition of the mitochondrial oxidant-generator menadione in control cells modulated ATP production from glycolysis. Indeed, using selective inhibitors, we found that the production of superoxide/hydrogen peroxide at the IQ site of electron transport chain complex I is associated with the metabolic rewiring promoted by palmitate, while not changing mitochondrial oxygen consumption. In conclusion, we demonstrate that increased glycolytic flux linked to mitochondrially-generated redox imbalance is an early bioenergetic result of palmitate overload and lipotoxicity.


2021 ◽  
Vol 22 (5) ◽  
pp. 2578
Author(s):  
Trim Lajqi ◽  
Christian Marx ◽  
Hannes Hudalla ◽  
Fabienne Haas ◽  
Silke Große ◽  
...  

Microglia, the innate immune cells of the CNS, exhibit long-term response changes indicative of innate immune memory (IIM). Our previous studies revealed IIM patterns of microglia with opposing immune phenotypes: trained immunity after a low dose and immune tolerance after a high dose challenge with pathogen-associated molecular patterns (PAMP). Compelling evidence shows that innate immune cells adopt features of IIM via immunometabolic control. However, immunometabolic reprogramming involved in the regulation of IIM in microglia has not been fully addressed. Here, we evaluated the impact of dose-dependent microglial priming with ultra-low (ULP, 1 fg/mL) and high (HP, 100 ng/mL) lipopolysaccharide (LPS) doses on immunometabolic rewiring. Furthermore, we addressed the role of PI3Kγ on immunometabolic control using naïve primary microglia derived from newborn wild-type mice, PI3Kγ-deficient mice and mice carrying a targeted mutation causing loss of lipid kinase activity. We found that ULP-induced IIM triggered an enhancement of oxygen consumption and ATP production. In contrast, HP was followed by suppressed oxygen consumption and glycolytic activity indicative of immune tolerance. PI3Kγ inhibited glycolysis due to modulation of cAMP-dependent pathways. However, no impact of specific PI3Kγ signaling on immunometabolic rewiring due to dose-dependent LPS priming was detected. In conclusion, immunometabolic reprogramming of microglia is involved in IIM in a dose-dependent manner via the glycolytic pathway, oxygen consumption and ATP production: ULP (ultra-low-dose priming) increases it, while HP reduces it.


2011 ◽  
Vol 435 (2) ◽  
pp. 519-528 ◽  
Author(s):  
Brian E. Sansbury ◽  
Daniel W. Riggs ◽  
Robert E. Brainard ◽  
Joshua K. Salabei ◽  
Steven P. Jones ◽  
...  

During cardiac remodelling, the heart generates higher levels of reactive species; yet an intermediate ‘compensatory’ stage of hypertrophy is associated with a greater ability to withstand oxidative stress. The mechanisms underlying this protected myocardial phenotype are poorly understood. We examined how a cellular model of hypertrophy deals with electrophilic insults, such as would occur upon ischaemia or in the failing heart. For this, we measured energetics in control and PE (phenylephrine)-treated NRCMs (neonatal rat cardiomyocytes) under basal conditions and when stressed with HNE (4-hydroxynonenal). PE treatment caused hypertrophy as indicated by augmented atrial natriuretic peptide and increased cellular protein content. Hypertrophied myocytes demonstrated a 2.5-fold increase in ATP-linked oxygen consumption and a robust augmentation of oligomycin-stimulated glycolytic flux and lactate production. Hypertrophied myocytes displayed a protected phenotype that was resistant to HNE-induced cell death and a unique bioenergetic response characterized by a delayed and abrogated rate of oxygen consumption and a 2-fold increase in glycolysis upon HNE exposure. This augmentation of glycolytic flux was not due to increased glucose uptake, suggesting that electrophile stress results in utilization of intracellular glycogen stores to support the increased energy demand. Hypertrophied myocytes also had an increased propensity to oxidize HNE to 4-hydroxynonenoic acid and sustained less protein damage due to acute HNE insults. Inhibition of aldehyde dehydrogenase resulted in bioenergetic collapse when myocytes were challenged with HNE. The integration of electrophile metabolism with glycolytic and mitochondrial energy production appears to be important for maintaining myocyte homoeostasis under conditions of increased oxidative stress.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Sagartirtha Sarkar ◽  
Santanu Rana

Cardiac tissue engineering is an interdisciplinary field that engineers modulation of viable molecular milieu to restore, maintain or improve heart function. Myocardial workload (energy demand) and energy substrate availability (supply) are in continual flux to maintain specialized cellular processes, yet the heart has a limited capacity for substrate storage and utilization during pathophysiological conditions. Damage to heart muscle, acute or chronic, leads to dysregulation of cardiac metabolic processes associated with gradual but progressive decline in mitochondrial respiratory pathways resulting in diminished ATP production. The Peroxisome Proliferator Activated Receptor Alpha ( PPARα ) is known to regulate fatty acid to glucose metabolic balance as well as mitochondrial structural integrity. In this study, a non-canonical pathway of PPARα was analyzed by cardiomyocyte targeted PPARα overexpression during cardiac hypertrophy that showed significant downregulation in p53 acetylation as well as GSK3β activation levels. Targeted PPARα overexpression during hypertrophy resulted in restoration of mitochondrial structure and function along with significantly improved mitochondrial ROS generation and membrane potential. This is the first report of myocyte targeted PPARα overexpression in hypertrophied myocardium that results in an engineered heart with significantly improved function with increased muscle mitochondrial endurance and reduced mitochondrial apoptotic load, thus conferring a greater resistance to pathological stimuli within cardiac microenvironment.


2017 ◽  
Vol 83 (22) ◽  
Author(s):  
Chuanjuan Lü ◽  
Yongzhen Xia ◽  
Daixi Liu ◽  
Rui Zhao ◽  
Rui Gao ◽  
...  

ABSTRACT Production of sulfide (H2S, HS−, and S2−) by heterotrophic bacteria during aerobic growth is a common phenomenon. Some bacteria with sulfide:quinone oxidoreductase (SQR) and persulfide dioxygenase (PDO) can oxidize self-produced sulfide to sulfite and thiosulfate, but other bacteria without these enzymes release sulfide into the medium, from which H2S can volatilize into the gas phase. Here, we report that Cupriavidus necator H16, with the fccA and fccB genes encoding flavocytochrome c sulfide dehydrogenases (FCSDs), also oxidized self-produced H2S. A mutant in which fccA and fccB were deleted accumulated and released H2S. When fccA and fccB were expressed in Pseudomonas aeruginosa strain Pa3K with deletions of its sqr and pdo genes, the recombinant rapidly oxidized sulfide to sulfane sulfur. When PDO was also cloned into the recombinant, the recombinant with both FCSD and PDO oxidized sulfide to sulfite and thiosulfate. Thus, the proposed pathway is similar to the pathway catalyzed by SQR and PDO, in which FCSD oxidizes sulfide to polysulfide, polysulfide spontaneously reacts with reduced glutathione (GSH) to produce glutathione persulfide (GSSH), and PDO oxidizes GSSH to sulfite, which chemically reacts with polysulfide to produce thiosulfate. About 20.6% of sequenced bacterial genomes contain SQR, and only 3.9% contain FCSD. This is not a surprise, since SQR is more efficient in conserving energy because it passes electrons from sulfide oxidation into the electron transport chain at the quinone level, while FCSD passes electrons to cytochrome c. The transport of electrons from the latter to O2 conserves less energy. FCSDs are grouped into three subgroups, well conserved at the taxonomic level. Thus, our data show the diversity in sulfide oxidation by heterotrophic bacteria. IMPORTANCE Heterotrophic bacteria with SQR and PDO can oxidize self-produced sulfide and do not release H2S into the gas phase. C. necator H16 has FCSD but not SQR, and it does not release H2S. We confirmed that the bacterium used FCSD for the oxidation of self-produced sulfide. The bacterium also oxidized added sulfide. The common presence of SQRs, FCSDs, and PDOs in heterotrophic bacteria suggests the significant role of heterotrophic bacteria in sulfide oxidation, participating in sulfur biogeochemical cycling. Further, FCSDs have been identified in anaerobic photosynthetic bacteria and chemolithotrophic bacteria, but their physiological roles are unknown. We showed that heterotrophic bacteria use FCSDs to oxidize self-produced sulfide and extraneous sulfide, and they may be used for H2S bioremediation.


1982 ◽  
Vol 53 (5) ◽  
pp. 1116-1124 ◽  
Author(s):  
R. P. Cole ◽  
P. C. Sukanek ◽  
J. B. Wittenberg ◽  
B. A. Wittenberg

The effect of myoglobin on oxygen consumption and ATP production by isolated rat skeletal muscle mitochondria was studied under steady-state conditions of oxygen supply. A method is presented for the determination of steady-state oxygen consumption in the presence of oxygen-binding proteins. Oxygen consumed in suspensions of mitochondria was replenished continuously by transfer from a flowing gas phase. Liquid-phase oxygen pressure was measured with an oxygen electrode; the gas-phase oxygen concentration was held constant at a series of fixed values. Oxygen consumption was determined from the characteristic response time of the system and the difference in the steady-state gas- and liquid-phase oxygen concentrations. ATP production was determined from the generation of glucose 6-phosphate in the presence of hexokinase. During steady-state mitochondrial oxygen consumption, the oxygen pressure in the liquid phase is enhanced when myoglobin is present. Functional myoglobin present in the solution had no effect on the relation of mitochondrial respiration and ATP production to liquid-phase oxygen pressure. Myoglobin functions in this system to enhance the flux of oxygen into the myoglobin-containing phase. Myoglobin may function in a similar fashion in muscle by increasing oxygen flux into myocytes.


2020 ◽  
Author(s):  
Pierre Eyenga ◽  
Damien Roussel ◽  
Benjamin Rey ◽  
Patrice Ndille ◽  
Loic Teulier ◽  
...  

Abstract Background: To describe the effect of mechanical ventilation on diaphragm mitochondrial oxygen consumption, ATP production, reactive oxygen species (ROS) generation, and cytochrome-c oxidase activity and content, and their relationship to diaphragm strength in an experimental model of sepsis.Methods: A cecal ligation and puncture (CLP) protocol was performed in 12 rats while 12 controls underwent sham-operation. Half of the rats in each group were paralyzed and mechanically ventilated. We performed blood gas analysis and lactic acid assays 6 hours after surgery. Afterwards, we measured diaphragm strength and mitochondrial oxygen consumption, ATP and ROS generation, and cytochrome-c oxidase activity. We also measured malondialdehyde (MDA) content as an index of lipid peroxidation, and mRNA expression of the pro-inflammatory interleukin-1β (IL-1β) in diaphragms.Results: CLP rats showed severe hypotension, metabolic acidosis, and upregulation of diaphragm IL-1β mRNA expression. Compared to sham controls, spontaneously breathing CLP rats showed lower diaphragm force and increased susceptibility to fatigue, along with depressed mitochondrial oxygen consumption and ATP production and cytochrome-c oxidase activity. These rats also showed increased mitochondrial ROS generation and MDA content. Mechanical ventilation markedly restored mitochondrial oxygen consumption and ATP production in CLP rats; lowered mitochondrial ROS production by the complex 3; and preserved cytochrome-c oxidase activity.Conclusion: In an experimental model of sepsis, early initiation of mechanical ventilation restores diaphragm mitochondrial function.


Sign in / Sign up

Export Citation Format

Share Document