scholarly journals Energetics of terrestrial locomotion of the platypus Ornithorhynchus anatinus

2001 ◽  
Vol 204 (4) ◽  
pp. 797-803 ◽  
Author(s):  
F.E. Fish ◽  
P.B. Frappell ◽  
R.V. Baudinette ◽  
P.M. MacFarlane

The platypus Ornithorhynchus anatinus Shaw displays specializations in its limb structure for swimming that could negatively affect its terrestrial locomotion. Platypuses walked on a treadmill at speeds of 0.19-1.08 m × s(−1). Video recordings were used for gait analysis, and the metabolic rate of terrestrial locomotion was studied by measuring oxygen consumption. Platypuses used walking gaits (duty factor >0.50) with a sprawled stance. To limit any potential interference from the extensive webbing on the forefeet, platypuses walk on their knuckles. Metabolic rate increased linearly over a 2.4-fold range with increasing walking speed in a manner similar to that of terrestrial mammals, but was low as a result of the relatively low standard metabolic rate of this monotreme. The dimensionless cost of transport decreased with increasing speed to a minimum of 0.79. Compared with the cost of transport for swimming, the metabolic cost for terrestrial locomotion was 2.1 times greater. This difference suggests that the platypus may pay a price in terrestrial locomotion by being more aquatically adapted than other semi-aquatic or terrestrial mammals.

1997 ◽  
Vol 200 (20) ◽  
pp. 2647-2652 ◽  
Author(s):  
F E Fish ◽  
R V Baudinette ◽  
P B Frappell ◽  
M P Sarre

The metabolism of swimming in the platypus Ornithorhynchus anatinus Shaw was studied by measurement of oxygen consumption in a recirculating water flume. Platypuses swam against a constant water current of 0.45-1.0 ms-1. Animals used a rowing stroke and alternated bouts of surface and submerged swimming. Metabolic rate remained constant over the range of swimming speeds tested. The cost of transport decreased with increasing velocity to a minimum of 0.51 at 1.0 ms-1. Metabolic rate and cost of transport for the platypus were lower than values for semiaquatic mammals that swim at the water surface using a paddling mode. However, relative to transport costs for fish, the platypus utilized energy at a similar level to highly derived aquatic mammals that use submerged swimming modes. The efficient aquatic locomotion of the platypus results from its specialised rowing mode in conjunction with enlarged and flexible forefeet for high thrust generation and a behavioral strategy that reduces drag and energy cost by submerged swimming.


1997 ◽  
Vol 200 (3) ◽  
pp. 531-542 ◽  
Author(s):  
A T Hind ◽  
W S Gurney

This paper describes a model of the metabolic cost of swimming in pinnipeds and its application to other marine homeotherms. The model takes account of both hydrodynamic and thermal processes. The thermal component incorporates both free and forced convection and takes account of the effect of hair on free convection. Using data from the literature to evaluate all but two of the parameters, we apply the model to metabolic rate data on phocid seals, otariids (sea lions), penguins and minke whales. We show that the model is able to reproduce two unusual features of the data; namely, a very rapid increase in metabolic rate at low velocities and an overall rise in metabolic rate with velocity which is slower than the rise in hydrodynamic drag force. The work shows the metabolic costs of propulsion and thermoregulation in a swimming homeotherm to be interlinked and suggests differing costs of propulsion for different modes of swimming. This is potentially of ecological significance since the swimming speed that minimises the cost of transport for an animal will change with changes in water temperature.


2011 ◽  
Vol 8 (2) ◽  
pp. 266-269 ◽  
Author(s):  
Andrew M. Hein ◽  
Katrina J. Keirsted

Understanding the effects of water temperature on the swimming performance of fishes is central in understanding how fish species will respond to global climate change. Metabolic cost of transport (COT)—a measure of the energy required to swim a given distance—is a key performance parameter linked to many aspects of fish life history. We develop a quantitative model to predict the effect of water temperature on COT. The model facilitates comparisons among species that differ in body size by incorporating the body mass-dependence of COT. Data from 22 fish species support the temperature and mass dependencies of COT predicted by our model, and demonstrate that modest differences in water temperature can result in substantial differences in the energetic cost of swimming.


2003 ◽  
Vol 95 (1) ◽  
pp. 172-183 ◽  
Author(s):  
Timothy M. Griffin ◽  
Thomas J. Roberts ◽  
Rodger Kram

We sought to understand how leg muscle function determines the metabolic cost of walking. We first indirectly assessed the metabolic cost of swinging the legs and then examined the cost of generating muscular force during the stance phase. Four men and four women walked at 0.5, 1.0, 1.5, and 2.0 m/s carrying loads equal to 0, 10, 20, and 30% body mass positioned symmetrically about the waist. The net metabolic rate increased in nearly direct proportion to the external mechanical power during moderate-speed (0.5–1.5 m/s) load carrying, suggesting that the cost of swinging the legs is relatively small. The active muscle volume required to generate force on the ground and the rate of generating this force accounted for >85% of the increase in net metabolic rate across moderate speeds and most loading conditions. Although these factors explained less of the increase in metabolic rate between 1.5 and 2.0 m/s (∼50%), the cost of generating force per unit volume of active muscle [i.e., the cost coefficient ( k)] was similar across all conditions [ k = 0.11 ± 0.03 (SD) J/cm3]. These data indicate that, regardless of the work muscles do, the metabolic cost of walking can be largely explained by the cost of generating muscular force during the stance phase.


2013 ◽  
Vol 114 (4) ◽  
pp. 498-503 ◽  
Author(s):  
Alberto E. Minetti ◽  
Paolo Gaudino ◽  
Elena Seminati ◽  
Dario Cazzola

Although most of the literature on locomotion energetics and biomechanics is about constant-speed experiments, humans and animals tend to move at variable speeds in their daily life. This study addresses the following questions: 1) how much extra metabolic energy is associated with traveling a unit distance by adopting acceleration/deceleration cycles in walking and running, with respect to constant speed, and 2) how can biomechanics explain those metabolic findings. Ten males and ten females walked and ran at fluctuating speeds (5 ± 0, ± 1, ± 1.5, ± 2, ± 2.5 km/h for treadmill walking, 11 ± 0, ± 1, ± 2, ± 3, ± 4 km/h for treadmill and field running) in cycles lasting 6 s. Field experiments, consisting of subjects following a laser spot projected from a computer-controlled astronomic telescope, were necessary to check the noninertial bias of the oscillating-speed treadmill. Metabolic cost of transport was found to be almost constant at all speed oscillations for running and up to ±2 km/h for walking, with no remarkable differences between laboratory and field results. The substantial constancy of the metabolic cost is not explained by the predicted cost of pure acceleration/deceleration. As for walking, results from speed-oscillation running suggest that the inherent within-stride, elastic energy-free accelerations/decelerations when moving at constant speed work as a mechanical buffer for among-stride speed fluctuations, with no extra metabolic cost. Also, a recent theory about the analogy between sprint (level) running and constant-speed running on gradients, together with the mechanical determinants of gradient locomotion, helps to interpret the present findings.


2021 ◽  
Author(s):  
Russell T Johnson ◽  
Nicholas August Bianco ◽  
James Finley

Several neuromuscular impairments, such as weakness (hemiparesis), occur after an individual has a stroke, and these impairments primarily affect one side of the body more than the other. Predictive musculoskeletal modeling presents an opportunity to investigate how a specific impairment affects gait performance post-stroke. Therefore, our aim was to use to predictive simulation to quantify the spatiotemporal asymmetries and changes to metabolic cost that emerge when muscle strength is unilaterally reduced. We also determined how forced spatiotemporal symmetry affects metabolic cost. We modified a 2-D musculoskeletal model by uniformly reducing the peak isometric muscle force in all muscles unilaterally. We then solved optimal control simulations of walking across a range of speeds by minimizing the sum of the cubed muscle excitations across all muscles. Lastly, we ran additional optimizations to test if reducing spatiotemporal asymmetry would result in an increase in metabolic cost. Our results showed that the magnitude and direction of effort-optimal spatiotemporal asymmetries depends on both the gait speed and level of weakness. Also, the optimal metabolic cost of transport was 1.25 m/s for the symmetrical and 20% weakness models but slower (1.00 m/s) for the 40% and 60% weakness models, suggesting that hemiparesis can account for a portion of the slower gait speed seen in people post-stroke. Adding spatiotemporal asymmetry to the cost function resulted in small increases (~4%) in metabolic cost. Overall, our results indicate that spatiotemporal asymmetry may be optimal for people post-stroke, who have asymmetrical neuromuscular impairments. Additionally, the effect of speed and level of weakness on spatiotemporal asymmetry may explain the well-known heterogenous distribution of spatiotemporal asymmetries observed in the clinic. Future work could extend our results by testing the effects of other impairments on optimal gait strategies, and therefore build a more comprehensive understanding of the gait patterns in people post-stroke.


Author(s):  
Alberto Enrico Minetti

A few years before Apollo Missions to Moon, locomotion physiologists promoted research and discussion about the potential adaptation of human body, the musculo-skeletal apparatus in particular, to an environment subject to a much smaller gravity acceleration than on Earth. Rodolfo Margaria and Giovanni Cavagna, who had just started investigating the fundamental mechanical paradigms of terrestrial locomotion, built a gravity-emulation facility in a 15 m tall vent shaft in Milano to study how jumping ability was affected by low-gravity. The combined knowledge led them to correctly predict that humans on the Moon would have walked at a very low pace and the alternative to an impaired running would have been a bouncing gait like hopping. Since then, other scientists around the world kept on researching on this subject, both experimentally and through mathematical models. Models based on ‘dynamic similarity’ (Froude Number) have confirmed that spontaneous locomotion adopted by astronauts was predictable. Recent biomechanical and metabolic experiments in the rebuilt emulation facility in Milano indicated that gaits with very different economy on Earth (running, skipping and hopping range from 2x to 10x, when compared to walking) progressively tend to have the same cost of transport when gravity decreases, and they are all alike at Moon gravity. This suggests that the energy devoted to sustain body weight represents a crucial determinant in the propulsion economy. Together with further biomechanical analysis, these data from emulated outer space are promising clues toward a better understanding of still unsolved mysteries of terrestrial locomotion (as the speed independence of metabolic cost of running).


1993 ◽  
Vol 179 (1) ◽  
pp. 245-259 ◽  
Author(s):  
D. Berrigan ◽  
J. R. Lighton

We report the cost of transport and kinematics of terrestrial locomotion by larval blowflies (Protophormia terraenovae, Diptera: Calliphoridae). We contrast inter- and intra-individual methods for estimating minimum cost of transport (MCOT) and the relationship between speed, contraction frequency and distance traveled per contraction. The minimum cost of transport calculated from intra-individual data is 2297 +/− 317 J kg-1 m-1 (S.E.M.) and the MCOT calculated from inter-individual comparisons is statistically indistinguishable at 1910 +/− 327 J kg-1 m-1. These values are almost ten times higher than the predicted value for a similar-sized limbed arthropod. Fly larvae travel by repeated peristaltic contractions and individual contractions cost about the same amount as individual strides in limbed insects. Both contraction frequency and distance traveled per contraction increase linearly with speed. Doubling the contraction frequency or the distance traveled per contraction approximately doubles speed. The cost of transport in fly larvae is among the highest recorded for terrestrial locomotion, confirming the suggestion that biomechanical and kinematic properties of limbless organisms with hydraulic skeletons lead to very high costs of transport.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3008 ◽  
Author(s):  
Leah M. Sparrow ◽  
Emily Pellatt ◽  
Sabrina S. Yu ◽  
David A. Raichlen ◽  
Herman Pontzer ◽  
...  

In legged terrestrial locomotion, the duration of stance phase, i.e., when limbs are in contact with the substrate, is positively correlated with limb length, and negatively correlated with the metabolic cost of transport. These relationships are well documented at the interspecific level, across a broad range of body sizes and travel speeds. However, such relationships are harder to evaluate within species (i.e., where natural selection operates), largely for practical reasons, including low population variance in limb length, and the presence of confounding factors such as body mass, or training. Here, we compared spatiotemporal kinematics of gait in Longshanks, a long-legged mouse line created through artificial selection, and in random-bred, mass-matched Control mice raised under identical conditions. We used a gait treadmill to test the hypothesis that Longshanks have longer stance phases and stride lengths, and decreased stride frequencies in both fore- and hind limbs, compared with Controls. Our results indicate that gait differs significantly between the two groups. Specifically, and as hypothesized, stance duration and stride length are 8–10% greater in Longshanks, while stride frequency is 8% lower than in Controls. However, there was no difference in the touch-down timing and sequence of the paws between the two lines. Taken together, these data suggest that, for a given speed, Longshanks mice take significantly fewer, longer steps to cover the same distance or running time compared to Controls, with important implications for other measures of variation among individuals in whole-organism performance, such as the metabolic cost of transport.


2021 ◽  
Author(s):  
Patrick W. Franks ◽  
Gwendolyn M. Bryan ◽  
Ricardo Reyes ◽  
Meghan P. O'Donovan ◽  
Karen N. Gregorczyk ◽  
...  

For exoskeletons to be successful in real-world settings, they will need to be effective across a variety of terrains, including on inclines. While some single-joint exoskeletons have assisted incline walking, recent successes in level-ground assistance suggest that greater improvements may be possible by optimizing assistance of the whole leg. To understand how exoskeleton assistance should change with incline, we used human-in-the-loop optimization to find whole-leg exoskeleton assistance torques that minimized metabolic cost on a range of grades. We optimized assistance for three expert, able-bodied participants on 5 degree, 10 degree and 15 degree inclines using a hip-knee-ankle exoskeleton emulator. For all assisted conditions, the cost of transport was reduced by at least 50% relative to walking in the device with no assistance, a large improvement to walking that is comparable to the benefits of whole-leg assistance on level-ground. This corresponds to large absolute reductions in metabolic cost, with the most strenuous conditions reduced by 4.9 W/kg, more than twice the entire energy cost of level walking. Optimized extension torque magnitudes and exoskeleton power increased with incline, with hip extension, knee extension and ankle plantarflexion often growing as large as allowed by comfort-based limits. Applied powers on steep inclines were double the powers applied during level-ground walking, indicating that larger exoskeleton power may be optimal in scenarios where biological powers and costs are higher. Future exoskeleton devices can be expected to deliver large improvements in walking performance across a range of inclines, if they have sufficient torque and power capabilities.


Sign in / Sign up

Export Citation Format

Share Document