scholarly journals Trunk and leg kinematics of grounded and aerial running in bipedal macaques

2020 ◽  
pp. jeb.225532
Author(s):  
Reinhard Blickhan ◽  
Emanuel Andrada ◽  
Eishi Hirasaki ◽  
Naomichi Ogihara

Across a wide range of Froude speeds, non-human primates such as macaques prefer to use grounded and aerial running when locomoting bipedally. Both gaits are characterized by bouncing kinetics of the center of mass. On the other hand, a discontinuous change from pendular to bouncing kinetics occurs in human locomotion. To clarify the mechanism underlying these differences in bipedal gait mechanics between humans and non-human primates, we investigated the influence of gait on joint kinematics in the legs and trunk of three macaques crossing an experimental track. The coordination of movement was compared with observations available for primates. Compared to human running, macaque leg retraction cannot merely be produced by hip extension, but needs to be supported by substantial knee flexion. As a result, despite quasi-elastic whole-leg operation, the macaque's knee showed only minor rebound behavior. Ankle extension resembled that observed during human running. Unlike human running and independent of gait, torsion of the trunk represents a rather conservative feature in primates, and pelvic axial rotation added to step length. Pelvic lateral lean during grounded running by macaques (compliant leg) and human walking (stiff leg) depends on gait dynamics at the same Froude speed. The different coordination between the thorax and pelvis in the sagittal plane as compared to human runners indicates different bending modes of the spine. Morphological adaptations in non-human primates to quadrupedal locomotion may prevent human-like operation of the leg and limit exploitation of quasi-elastic leg operation despite running dynamics.

2010 ◽  
Vol 07 (02) ◽  
pp. 263-280 ◽  
Author(s):  
SEYED HOSSEIN TAMADDONI ◽  
FARID JAFARI ◽  
ALI MEGHDARI ◽  
SAEED SOHRABPOUR

Human running can be stabilized in a wide range of speeds by automatically adjusting muscular properties of leg and torso. It is known that fast locomotion dynamics can be approximated by a spring loaded inverted pendulum (SLIP) system, in which leg is replaced by a single spring connecting body mass to ground. Taking advantage of the inherent stability of SLIP model, a hybrid control strategy is developed that guarantees a stable biped locomotion in sagittal plane. In the presented approach, nonlinear control methods are applied to synchronize the biped dynamics and the spring-mass dynamics. As the biped center of mass follows the mass of the mass-spring model, the whole biped performs a stable locomotion corresponding to SLIP model. Simulations are done to obtain a repeatable hopping for a three-link underactuated biped model. Results show that periodic hopping gaits can be stabilized, and the presented control strategy provides feasible gait trajectories for stance and swing phases.


2016 ◽  
Vol 16 (07) ◽  
pp. 1650099 ◽  
Author(s):  
YO CHEN ◽  
KUANG-YA WU ◽  
YU-JU TSAI ◽  
WEN-TIEN YANG ◽  
JIA-HAO CHANG

This study identifies the optimal crouched starting positions (elongated, medium, or bunched) from push-off to the first two steps. Seven elite sprinters were recruited as participants in this study (aged: 21[Formula: see text][Formula: see text][Formula: see text]2 years). A high-speed camera (250[Formula: see text]Hz) was used to collect motion-based images on a sagittal plane. Kwon3D (software) was used to analyze the center of mass (COM) movement, step length, foot linear velocity, take-off angle, and trunk angle. Participants were tested in a 60[Formula: see text]m sprint for bunched, medium, and elongated starting positions. A one-way analysis of variance (ANOVA) ([Formula: see text]) with repeated measures was performed to determine the difference in kinematics in the three crouched starting positions. The LSD comparison was applied to examine differences among pairs of means. Our results indicated that the medium starting position demonstrated a greater first step length and foot linear velocity when compared to the bunched starting position. In the first step toe-off, a lower COM vertical velocity was observed in the medium starting position when compared with the elongated starting position. This study concluded that the medium starting position was the ideal starting position.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 598
Author(s):  
Massimiliano Pau ◽  
Bruno Leban ◽  
Michela Deidda ◽  
Federica Putzolu ◽  
Micaela Porta ◽  
...  

The majority of people with Multiple Sclerosis (pwMS), report lower limb motor dysfunctions, which may relevantly affect postural control, gait and a wide range of activities of daily living. While it is quite common to observe a different impact of the disease on the two limbs (i.e., one of them is more affected), less clear are the effects of such asymmetry on gait performance. The present retrospective cross-sectional study aimed to characterize the magnitude of interlimb asymmetry in pwMS, particularly as regards the joint kinematics, using parameters derived from angle-angle diagrams. To this end, we analyzed gait patterns of 101 pwMS (55 women, 46 men, mean age 46.3, average Expanded Disability Status Scale (EDSS) score 3.5, range 1–6.5) and 81 unaffected individuals age- and sex-matched who underwent 3D computerized gait analysis carried out using an eight-camera motion capture system. Spatio-temporal parameters and kinematics in the sagittal plane at hip, knee and ankle joints were considered for the analysis. The angular trends of left and right sides were processed to build synchronized angle–angle diagrams (cyclograms) for each joint, and symmetry was assessed by computing several geometrical features such as area, orientation and Trend Symmetry. Based on cyclogram orientation and Trend Symmetry, the results show that pwMS exhibit significantly greater asymmetry in all three joints with respect to unaffected individuals. In particular, orientation values were as follows: 5.1 of pwMS vs. 1.6 of unaffected individuals at hip joint, 7.0 vs. 1.5 at knee and 6.4 vs. 3.0 at ankle (p < 0.001 in all cases), while for Trend Symmetry we obtained at hip 1.7 of pwMS vs. 0.3 of unaffected individuals, 4.2 vs. 0.5 at knee and 8.5 vs. 1.5 at ankle (p < 0.001 in all cases). Moreover, the same parameters were sensitive enough to discriminate individuals of different disability levels. With few exceptions, all the calculated symmetry parameters were found significantly correlated with the main spatio-temporal parameters of gait and the EDSS score. In particular, large correlations were detected between Trend Symmetry and gait speed (with rho values in the range of –0.58 to –0.63 depending on the considered joint, p < 0.001) and between Trend Symmetry and EDSS score (rho = 0.62 to 0.69, p < 0.001). Such results suggest not only that MS is associated with significantly marked interlimb asymmetry during gait but also that such asymmetry worsens as the disease progresses and that it has a relevant impact on gait performances.


2021 ◽  
pp. 154596832110193
Author(s):  
Sungwoo Park ◽  
Chang Liu ◽  
Natalia Sánchez ◽  
Julie K. Tilson ◽  
Sara J. Mulroy ◽  
...  

Background People poststroke often walk with a spatiotemporally asymmetric gait, due in part to sensorimotor impairments in the paretic lower extremity. Although reducing asymmetry is a common objective of rehabilitation, the effects of improving symmetry on balance are yet to be determined. Objective We established the concurrent validity of whole-body angular momentum as a measure of balance, and we determined if reducing step length asymmetry would improve balance by decreasing whole-body angular momentum. Methods We performed clinical balance assessments and measured whole-body angular momentum during walking using a full-body marker set in a sample of 36 people with chronic stroke. We then used a biofeedback-based approach to modify step length asymmetry in a subset of 15 of these individuals who had marked asymmetry and we measured the resulting changes in whole-body angular momentum. Results When participants walked without biofeedback, whole-body angular momentum in the sagittal and frontal plane was negatively correlated with scores on the Berg Balance Scale and Functional Gait Assessment supporting the validity of whole-body angular momentum as an objective measure of dynamic balance. We also observed that when participants walked more symmetrically, their whole-body angular momentum in the sagittal plane increased rather than decreased. Conclusions Voluntary reductions of step length asymmetry in people poststroke resulted in reduced measures of dynamic balance. This is consistent with the idea that after stroke, individuals might have an implicit preference not to deviate from their natural asymmetry while walking because it could compromise their balance. Clinical Trials Number: NCT03916562.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoo Jin Choo ◽  
Min Cheol Chang

AbstractWe conducted a meta-analysis to investigate the effectiveness of ankle–foot orthosis (AFO) use in improving gait biomechanical parameters such as walking speed, mobility, and kinematics in patients with stroke with gait disturbance. We searched the MEDLINE (Medical Literature Analysis and Retrieval System Online), CINAHL (Cumulative Index to Nursing and Allied Health Literature), Cochrane, Embase, and Scopus databases and retrieved studies published until June 2021. Experimental and prospective studies were included that evaluated biomechanics or kinematic parameters with or without AFO in patients with stroke. We analyzed gait biomechanical parameters, including walking speed, mobility, balance, and kinematic variables, in studies involving patients with and without AFO use. The criteria of the Cochrane Handbook for Systematic Reviews of Interventions were used to evaluate the methodological quality of the studies, and the level of evidence was evaluated using the Research Pyramid model. Funnel plot analysis and Egger’s test were performed to confirm publication bias. A total of 19 studies including 434 participants that reported on the immediate or short-term effectiveness of AFO use were included in the analysis. Significant improvements in walking speed (standardized mean difference [SMD], 0.50; 95% CI 0.34–0.66; P < 0.00001; I2, 0%), cadence (SMD, 0.42; 95% CI 0.22–0.62; P < 0.0001; I2, 0%), step length (SMD, 0.41; 95% CI 0.18–0.63; P = 0.0003; I2, 2%), stride length (SMD, 0.43; 95% CI 0.15–0.71; P = 0.003; I2, 7%), Timed up-and-go test (SMD, − 0.30; 95% CI − 0.54 to − 0.07; P = 0.01; I2, 0%), functional ambulation category (FAC) score (SMD, 1.61; 95% CI 1.19–2.02; P < 0.00001; I2, 0%), ankle sagittal plane angle at initial contact (SMD, 0.66; 95% CI 0.34–0.98; P < 0.0001; I2, 0%), and knee sagittal plane angle at toe-off (SMD, 0.39; 95% CI 0.04–0.73; P = 0.03; I2, 46%) were observed when the patients wore AFOs. Stride time, body sway, and hip sagittal plane angle at toe-off were not significantly improved (p = 0.74, p = 0.07, p = 0.07, respectively). Among these results, the FAC score showed the most significant improvement, and stride time showed the lowest improvement. AFO improves walking speed, cadence, step length, and stride length, particularly in patients with stroke. AFO is considered beneficial in enhancing gait stability and ambulatory ability.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guillaume Fumery ◽  
Nicolas A. Turpin ◽  
Laetitia Claverie ◽  
Vincent Fourcassié ◽  
Pierre Moretto

AbstractThe biomechanics of load carriage has been studied extensively with regards to single individuals, yet not so much with regards to collective transport. We investigated the biomechanics of walking in 10 paired individuals carrying a load that represented 20%, 30%, or 40% of the aggregated body-masses. We computed the energy recovery rate at the center of mass of the system consisting of the two individuals plus the carried load in order to test to what extent the pendulum-like behavior and the economy of the gait were affected. Joint torque was also computed to investigate the intra- and inter-subject strategies occurring in response to this. The ability of the subjects to move the whole system like a pendulum appeared rendered obvious through shortened step length and lowered vertical displacements at the center of mass of the system, while energy recovery rate and total mechanical energy remained constant. In parallel, an asymmetry of joint moment vertical amplitude and coupling among individuals in all pairs suggested the emergence of a leader/follower schema. Beyond the 30% threshold of increased load mass, the constraints at the joint level were balanced among individuals leading to a degraded pendulum-like behavior.


2002 ◽  
Vol 18 (3) ◽  
pp. 257-270 ◽  
Author(s):  
James G. Hay

There have been few attempts to synthesize the knowledge gleaned from the study of cyclic human locomotion and, specifically, to determine whether there are general laws that describe or govern all such forms of locomotion. The purpose of this paper was to test the hypothesis that, when a human participant performs multiple trials of a given form of cyclic locomotion at a wide range of speeds (S) and without constraint on cycle rate (CR) or cycle length (CL), the relationships of CR vs. S and CL vs. S have the same basic characteristics as do those for any other form of cyclic locomotion. Data were gathered from published and unpublished sources. For each participant and form of locomotion, CR-vs.-S and CL-vs.-S relationships were plotted on a common scattergram with S on the abscissa and both CR and CL on the ordinate. Analysis of data collected on 49 participants and 12 forms of locomotion showed that, for every combination of participant and form of locomotion considered (excluding combinations involving simulated locomotion), the relationships of CR vs. S and CL vs. S had the same basic characteristics. These relationships were quadratic in form with CR-vs.-S concave upward and CL-vs.-S concave downward. The factor that made the greater contribution to increases in S was a function of S, with CL the primary factor at low S and CR the primary factor at high S. In short, the results obtained provided unequivocal support for the hypothesis of the study. The basic CR-vs.-S and CL-vs.-S relationships observed for forms of actual locomotion were also observed for some, but not all, of the forms of simulated locomotion examined.


2020 ◽  
Vol 22 (2) ◽  
Author(s):  
Kateřina Kolářová ◽  
Tomáš Vodička ◽  
Michal Bozděch ◽  
Martin Repko

Purpose: The purpose of the study was to describe changes in the kinematic parameters in the patients’ gait after total hip replacement. Methods: Research group of men in the end stage of osteoarthritis indicated to the THR (n = 10; age 54.1 ± 7.5 years; weight 92.2 ± 9.6 kg; height 179.7 ± 5.9 cm). All participants underwent a total of three measurements: before surgery, 3 and 6 months after the surgery. Using the 3D kinematic analysis system, the patients’ gait was recorded during each measurement session and kinematic analysis was carried out. The parameters that were monitored included the sagittal range of motion while walking in the ankle, the knee and the hip joints of the operated and the unoperated limb, and the range in the hip joint’s frontal plane, the rotation of pelvis in the frontal and transverse planes, as well as the speed of walking and the walking step length. Results: Significant increases were found in sagittal range of motion in the operated hip joint, sagittal range of motion in the ankle joint on the unoperated side and in the walking step length of the unoperated limb. Conclusions: During walking after a THR, the sagittal range of motion in the ankle of the unoperated limb increases. Also, the range of motion in the sagittal plane on the operated joint increases, which is related to the lengthening of the step of the unoperated lower limb.


Author(s):  
Joao Mauricio Rosario ◽  
Leonimer Flavio de Melo ◽  
Didier Dumur ◽  
Maria Makarov ◽  
Jessica Fernanda Pereira Zamaia ◽  
...  

This chapter presents the development of a lower limb orthosis based on the continuous dynamic behavior and on the events presented on the human locomotion, when the legs alternate between different functions. A computational model was developed to approach the different functioning models related to the bipedal anthropomorphic gait. Lagrange modeling was used for events modeling the non-holonomic dynamics of the system. This chapter combines the comparison of the use of the predictive control based on dynamical study and the decoupling of the dynamical model, with auxiliary parallelograms, for locating the center of mass of the mechanism using springs in order to achieve the balancing of each leg. Virtual model was implemented and its kinematic and dynamic motion analyzed through simulation of an exoskeleton, aimed at lower limbs, for training and rehabilitation of the human gait, in which the dynamic model of anthropomorphic mechanism and predictive control architecture with robust control is already developed.


Author(s):  
Joao Mauricio Rosario ◽  
Leonimer Flavio de Melo ◽  
Didier Dumur ◽  
Maria Makarov ◽  
Jessica Fernanda Pereira Zamaia ◽  
...  

This chapter presents the development of a lower limb orthosis based on the continuous dynamic behavior and on the events presented on the human locomotion, when the legs alternate between different functions. A computational model was developed to approach the different functioning models related to the bipedal anthropomorphic gait. Lagrange modeling was used for events modeling the non-holonomic dynamics of the system. This chapter combines the comparison of the use of the predictive control based on dynamical study and the decoupling of the dynamical model, with auxiliary parallelograms, for locating the center of mass of the mechanism using springs in order to achieve the balancing of each leg. Virtual model was implemented and its kinematic and dynamic motion analyzed through simulation of an exoskeleton, aimed at lower limbs, for training and rehabilitation of the human gait, in which the dynamic model of anthropomorphic mechanism and predictive control architecture with robust control is already developed.


Sign in / Sign up

Export Citation Format

Share Document