scholarly journals Transgenerational plasticity responses of oysters to ocean acidification differ with habitat

2021 ◽  
pp. jeb.239269
Author(s):  
Laura M. Parker ◽  
Elliot Scanes ◽  
Wayne A. O'Connor ◽  
Pauline M. Ross

Transgenerational plasticity (TGP) has been identified as a critical mechanism of acclimation which may buffer marine organisms against climate change, yet whether the TGP response of marine organisms is altered depending on their habitat is unknown. Many marine organisms are found in intertidal zones where they experience episodes of emersion daily as the tide rises and recedes. During episodes of emersion, the accumulation of metabolic carbon dioxide (CO2) leads to hypercapnia for many species. How this metabolic hypercapnia impacts the TGP response of marine organisms to climate change is unknown as all previous transgenerational studies have been done under subtidal conditions, where parents are constantly immersed. Herein, we assess the capacity of the ecologically and economically important oyster, Saccostrea glomerata to acclimate to elevated CO2 dependent on habitat, across its vertical distribution, from the subtidal to intertidal zone. Tidal habitat altered both the existing tolerance and transgenerational response of S. glomerata to elevated CO2. Overall, larvae from parents conditioned in an intertidal habitat had a greater existing tolerance to elevated CO2 than larvae from parents conditioned in a subtidal habitat but had a lower capacity for beneficial TGP following parental exposure to elevated CO2. Our results suggest that the transgenerational plasticity responses of marine species will not be uniform across their distribution and highlights the need to consider the habitat of a species when assessing TGP responses to climate change stressors.

Author(s):  
Mitchell C Gibbs ◽  
Laura M Parker ◽  
Elliot Scanes ◽  
Maria Byrne ◽  
Wayne A O’Connor ◽  
...  

Abstract Climate change is expected to warm and acidify oceans and alter the phenology of phytoplankton, creating a mismatch between larvae and their food. Transgenerational plasticity (TGP) may allow marine species to acclimate to climate change; however, it is expected that this may come with elevated energetic demands. This study used the oysters, Saccostrea glomerata and Crassostrea gigas, to test the effects of adult parental exposure to elevated pCO2 and temperature on larvae during starvation and recovery. It was anticipated that beneficial effects of TGP will be limited when larvae oyster are starved. Transgenerational responses and lipid reserves of larvae were measured for 2 weeks. Larvae of C. gigas and S. glomerata from parents exposed to elevated pCO2 had greater survival when exposed to elevated CO2, but this differed between species and temperature. For S. glomerata, survival of larvae was greatest when the conditions experienced by larvae matched the condition of their parents. For C. gigas, survival of larvae was greater when parents and larvae were exposed to elevated pCO2. Larvae of both species used lipids when starved. The total lipid content was dependent on parental exposure and temperature. Against expectations, the beneficial TGP responses of larvae remained, despite starvation.


2021 ◽  
Vol 64 (1) ◽  
pp. 13-18
Author(s):  
Ira Gray ◽  
Lindsay A. Green-Gavrielidis ◽  
Carol Thornber

Abstract Caffeine is present in coastal environments worldwide and there is a need to assess its impact on marine organisms. Here, we exposed two species of ecologically important marine macroalgae (Chondrus crispus and Codium fragile subsp. fragile) to a suite of caffeine concentrations and measured their response. Caffeine concentrations of 10–100 ng L−1 had no significant effect on the growth rate or photosynthetic efficiency of either algae. Extremely high concentrations (100–200 mg L−1), which may occur acutely, produced sublethal effects for both species and mortality in C. fragile subsp. fragile. Our results highlight the need to understand how caffeine impacts marine species.


Author(s):  
Jerelle A. Jesse ◽  
M. Victoria Agnew ◽  
Kohma Arai ◽  
C. Taylor Armstrong ◽  
Shannon M. Hood ◽  
...  

AbstractDiseases are important drivers of population and ecosystem dynamics. This review synthesizes the effects of infectious diseases on the population dynamics of nine species of marine organisms in the Chesapeake Bay. Diseases generally caused increases in mortality and decreases in growth and reproduction. Effects of diseases on eastern oyster (Crassostrea virginica) appear to be low in the 2000s compared to effects in the 1980s–1990s. However, the effects of disease were not well monitored for most of the diseases in marine organisms of the Chesapeake Bay, and few studies considered effects on growth and reproduction. Climate change and other anthropogenic effects are expected to alter host-pathogen dynamics, with diseases of some species expected to worsen under predicted future conditions (e.g., increased temperature). Additional study of disease prevalence, drivers of disease, and effects on population dynamics could improve fisheries management and forecasting of climate change effects on marine organisms in the Chesapeake Bay.


Water ◽  
2014 ◽  
Vol 6 (11) ◽  
pp. 3545-3574 ◽  
Author(s):  
Ben Harvey ◽  
Balsam Al-Janabi ◽  
Stefanie Broszeit ◽  
Rebekah Cioffi ◽  
Amit Kumar ◽  
...  

2016 ◽  
Vol 29 (9) ◽  
pp. 1667-1679 ◽  
Author(s):  
L. J. Corrigan ◽  
A. Fabiani ◽  
L. F. Chauke ◽  
C. R. McMahon ◽  
M. de Bruyn ◽  
...  

2021 ◽  
Author(s):  
Frank Melner ◽  
Imke Podbielski ◽  
Felix C Mark ◽  
Martin Tresguerres

Perspective: An ongoing loss of expertise on the biochemistry and physiology of marine organisms hampers our understanding of biological mechanisms upon rapidly growing “-omics” approaches reply -ultimately affecting our ability to predict organismal responses to climate change.


Author(s):  
Zhiyuan Shi ◽  
Jorge Assis ◽  
Mark John Costello

PLoS ONE ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. e0231595
Author(s):  
Andrew J. Allyn ◽  
Michael A. Alexander ◽  
Bradley S. Franklin ◽  
Felix Massiot-Granier ◽  
Andrew J. Pershing ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document