metabolic carbon
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 14)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Vol 13 (21) ◽  
pp. 12203
Author(s):  
Niklas Kappelt ◽  
Hugo Savill Russell ◽  
Szymon Kwiatkowski ◽  
Alireza Afshari ◽  
Matthew Stanley Johnson

Respiratory aerosols from breathing and talking are an important transmission route for viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Previous studies have found that particles with diameters ranging from 10 nm to 145 μm are produced from different regions in the respiratory system and especially smaller particles can remain airborne for long periods while carrying viral RNA. We present the first study in which respiratory aerosols have been simultaneously measured with carbon dioxide (CO2) to establish the correlation between the two concentrations. CO2 concentrations are easily available through low-cost sensors and could be used to estimate viral exposure through this correlation, whereas source-specific aerosol measurements are complicated and not possible with low-cost sensors. The increase in both respiratory aerosols and CO2 was linear over ten minutes in a 2 m3 chamber for all participants, suggesting a strong correlation. On average, talking released more particles than breathing, with 14,600 ± 16,800 min−1 (one-σ standard deviation) and 6210 ± 5630 min−1 on average, respectively, while CO2 increased with 139 ± 33 ppm min−1 during talking and 143 ± 29 ppm min−1 during breathing. Assuming a typical viral load of 7×106 RNA copies per mL of oral fluid, ten minutes of talking and breathing are estimated to produce 1 and 16 suspended RNA copies, respectively, correlating to a CO2 concentration of around 1800 ppm in a 2 m3 chamber. However, viral loads can vary by several orders of magnitude depending on the stage of the disease and the individual. It was therefore concluded that, by measuring CO2 concentrations, only the number and volume concentrations of released particles can be estimated with reasonable certainty, while the number of suspended RNA copies cannot.


2021 ◽  
Author(s):  
John Barry Gallagher ◽  
Victor Shelamoff ◽  
Cayne Layton

AbstractCurrently, global seaweed carbon sequestration estimates are taken as the fraction of the net primary production (NPP) exported to the deep ocean. The implication is that export is equivalent to net ecosystem production (NEP), and sequestration is the fraction of export that survives remineralisation. However, this perspective does not account for CO2 production fuelled by the consumption of coastal and terrigenous subsidies. Here we clarify: i) the role of export relative to seaweed NEP for systems closed and open to subsidies; and ii) the importance of subsidies by compiling published estimates of NEP from seaweed-dominated ecosystems; and iii) discuss their impact on the global seaweed carbon balance and other sequestration constraints as a mitigation service. Literature values of seaweed NEP were sparse (n = 18) and highly variable. Nevertheless, the average NEP (−9.2mmol C m-2 day-1 SE ± 11.6) suggested that seaweed ecosystems are more likely to be a global source of CO2. Moreover, the seaweeds’ global carbon balance became overwhelmingly heterotrophic (−40.6mmol C m-2 day-1) after accounting for the consumption of exported material. Critically, however, mitigation of greenhouse gas emissions must be assessed relative to their replacements ecosystems or states. We found replacement ecosystems such as shellfish reefs and turfs were notably more heterotrophic than seaweed systems, whilst urchin barrens were only marginally less than their seaweed counterparts; a ranking that appeared to be sustained after their amount of exported production had been remineralised. However, in circumstances where CO2 is supplied independently of organic metabolism and atmospheric exchange (e.g. upwelling and calcification), we caution the sole reliance on NEP or NPP in mitigation assessments. Nevertheless, a complete metabolic carbon balance relative to replacement states will ensure a more accurate mitigation assessment, one that does not exceed the capacity of these ecosystems.


2021 ◽  
Vol 57 ◽  
pp. 102340
Author(s):  
Jiao Xue ◽  
Tong Li ◽  
Ting-Ting Chen ◽  
Srinivasan Balamurugan ◽  
Wei-Dong Yang ◽  
...  

Author(s):  
Vincenzo Alterio ◽  
Emma Langella ◽  
Martina Buonanno ◽  
Davide Esposito ◽  
Alessio Nocentini ◽  
...  

2021 ◽  
Author(s):  
Niklas Kappelt ◽  
Hugo S. Russell ◽  
Szymon Kwiatkowski ◽  
Alireza Afshari ◽  
Matthew S. Johnson

Abstract Respiratory Aerosols from breathing and talking have found wide acceptance as a transmission route for viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Previous studies have found particles with diameters ranging from 10 nm to 145 µm, exhibited from different regions in the respiratory system. We present the first chamber study, in which respiratory aerosols have been simultaneously measured with carbon dioxide (CO2) to establish the correlation between the two concentrations. CO2 concentrations are easily available through low-cost sensors and could be used to estimate viral exposure through this correlation, whereas source-specific aerosol measurements are complicated and not possible with low cost sensors. The increase in both PM10 and CO2 was linear over ten minutes in a 2 m3 chamber for all participants, suggesting a strong correlation. On average, talking released more particles than breathing, with 14,600 ± 16,800 min-1 (one-σ standard deviation) and 6,210 ± 5,630 min-1 on average, respectively, while CO2 increased with 139 ± 33 ppm min-1 during talking and 143 ± 29 ppm min-1 during breathing. Assuming a typical viral load of 7 × 106 RNA copies per ml of oral fluid, ten minutes of talking and breathing are estimated to produce 7 and 16 suspended RNA copies, respectively, correlating to a CO2 concentration of around 1.800 ppm in a 2 m3 chamber. This provides a strong argument for keeping indoor spaces well ventilated and shows how CO2 concentrations, measured with low-cost sensors, could be used as a proxy for viral exposure.


2021 ◽  
Vol 12 ◽  
Author(s):  
Naoki Sato ◽  
Masakazu Toyoshima

Microalgae have the potential to recycle CO2 as starch and triacylglycerol (TAG), which provide alternative source of biofuel and high added-value chemicals. Starch accumulates in the chloroplast, whereas TAG accumulates in the cytoplasmic lipid droplets (LD). Preferential accumulation of starch or TAG may be achieved by switching intracellular metabolic carbon flow, but our knowledge on this control remains limited. Are these two products mutually exclusive? Or, does starch act as a precursor to TAG synthesis, or vice versa? To answer these questions, we analyzed carbon flow in starch and lipids using a stable isotope 13C in Chlamydomonas debaryana NIES-2212, which accumulates, without nutrient limitation, starch in the exponential growth phase and TAG in the stationary phase. Pulse labeling experiments as well as pulse labeling and chase experiments were conducted, and then, gas chromatography-mass spectrometry (GC-MS) analysis was performed on starch-derived glucose and lipid-bound fatty acids. We exploited the previously developed method of isotopomer analysis to estimate the proportion of various pools with different isotopic abundance. Starch turned over rapidly to provide carbon for the synthesis of fatty acids in the exponential phase cells. Most fatty acids showed rapid and slow components of metabolism, whereas oleic acid decayed according to a single exponential curve. Highly labeled population of fatty acids that accumulated during the initial labeling decreased rapidly, and replaced by low abundance population during the chase time, indicating that highly labeled fatty acids were degraded and the resulting carbons were re-used in the re-synthesis with about 9-fold unlabeled, newly fixed carbons. Elongation of C16–C18 acids in vivo was indicated by partially labeled C18 acids. The accumulation of TAG in the stationary growth phase was accounted for by both de novo synthesis and remodeling of membrane lipids. These results suggest that de novo synthesis of starch and TAG was rapid and transient, and also almost independent to each other, but there is a pool of starch quickly turning over for the synthesis of fatty acids. Fatty acids were also subject to re-synthesis. Evidence was also provided for remodeling of lipids, namely, re-use of acyl groups in polar lipids for TAG synthesis.


2021 ◽  
pp. jeb.239269
Author(s):  
Laura M. Parker ◽  
Elliot Scanes ◽  
Wayne A. O'Connor ◽  
Pauline M. Ross

Transgenerational plasticity (TGP) has been identified as a critical mechanism of acclimation which may buffer marine organisms against climate change, yet whether the TGP response of marine organisms is altered depending on their habitat is unknown. Many marine organisms are found in intertidal zones where they experience episodes of emersion daily as the tide rises and recedes. During episodes of emersion, the accumulation of metabolic carbon dioxide (CO2) leads to hypercapnia for many species. How this metabolic hypercapnia impacts the TGP response of marine organisms to climate change is unknown as all previous transgenerational studies have been done under subtidal conditions, where parents are constantly immersed. Herein, we assess the capacity of the ecologically and economically important oyster, Saccostrea glomerata to acclimate to elevated CO2 dependent on habitat, across its vertical distribution, from the subtidal to intertidal zone. Tidal habitat altered both the existing tolerance and transgenerational response of S. glomerata to elevated CO2. Overall, larvae from parents conditioned in an intertidal habitat had a greater existing tolerance to elevated CO2 than larvae from parents conditioned in a subtidal habitat but had a lower capacity for beneficial TGP following parental exposure to elevated CO2. Our results suggest that the transgenerational plasticity responses of marine species will not be uniform across their distribution and highlights the need to consider the habitat of a species when assessing TGP responses to climate change stressors.


2020 ◽  
Vol 27 (28) ◽  
pp. 4613-4621
Author(s):  
Congqiang Zhang ◽  
Heng-Phon Too

Backgrounds: Abundant and renewable biomaterials serve as ideal substrates for the sustainable production of various chemicals, including natural products (e.g., pharmaceuticals and nutraceuticals). For decades, researchers have been focusing on how to engineer microorganisms and developing effective fermentation processes to overproduce these molecules from biomaterials. Despite many laboratory achievements, it remains a challenge to transform some of these into successful industrial applications. Results: Here, we review recent progress in strategies and applications in metabolic engineering for the production of natural products. Modular engineering methods, such as a multidimensional heuristic process markedly improve efficiencies in the optimization of long and complex biosynthetic pathways. Dynamic pathway regulation realizes autonomous adjustment and can redirect metabolic carbon fluxes to avoid the accumulation of toxic intermediate metabolites. Microbial co-cultivation bolsters the identification and overproduction of natural products by introducing competition or cooperation of different species. Efflux engineering is applied to reduce product toxicity or to overcome storage limitation and thus improves product titers and productivities. Conclusion: Without dispute, many of the innovative methods and strategies developed are gradually catalyzing this transformation from the laboratory into the industry in the biosynthesis of natural products. Sometimes, it is necessary to combine two or more strategies to acquire additive or synergistic benefits. As such, we foresee a bright future of the biosynthesis of pharmaceuticals and nutraceuticals in microbes from renewable biomaterials.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9355
Author(s):  
Michal Grossowicz ◽  
Or M. Bialik ◽  
Eli Shemesh ◽  
Dan Tchernov ◽  
Hubert B. Vonhof ◽  
...  

Climate, which sets broad limits for migrating species, is considered a key filter to species migration between contrasting marine environments. The Southeast Mediterranean Sea (SEMS) is one of the regions where ocean temperatures are rising the fastest under recent climate change. Also, it is the most vulnerable marine region to species introductions. Here, we explore the factors which enabled the colonization of the endemic Red Sea octocoral Melithaea erythraea (Ehrenberg, 1834) along the SEMS coast, using sclerite oxygen and carbon stable isotope composition (δ18OSC and δ13CSC), morphology, and crystallography. The unique conditions presented by the SEMS include a greater temperature range (∼15 °C) and ultra-oligotrophy, and these are reflected by the lower δ13CSCvalues. This is indicative of a larger metabolic carbon intake during calcification, as well as an increase in crystal size, a decrease of octocoral wart density and thickness of the migrating octocoral sclerites compared to the Red Sea samples. This suggests increased stress conditions, affecting sclerite deposition of the SEMS migrating octocoral. The δ18Osc range of the migrating M. erythraea indicates a preference for warm water sclerite deposition, similar to the native depositional temperature range of 21–28 °C. These findings are associated with the observed increase of minimum temperatures in winter for this region, at a rate of 0.35 ± 0.27 °C decade−1 over the last 30 years, and thus the region is becoming more hospitable to the Indo-Pacific M. erythraea. This study shows a clear case study of “tropicalization” of the Mediterranean Sea due to recent warming.


Sign in / Sign up

Export Citation Format

Share Document