scholarly journals The cellular basis of compensatory muscle growth in the teleost Odontesthes bonariensis

Author(s):  
Ignacio Simó ◽  
Mariano Faggiani ◽  
Daniel A. Fernandez ◽  
Andrés A. Sciara ◽  
Silvia E. Arranz

This study evaluates white muscle growth and in vivo cell proliferation during a fasting and refeeding trial, using pejerrey Odontesthes bonariensis as animal model, in order to better understand the cellular basis governing catch-up growth. Experiments consisted in two groups of fish, a control one continuously fed ad libitum, and a group fasted for 2 weeks and then fed for another 2 weeks. We examined how the formation of new muscle fibers and their increase in size were related to muscle precursor cell (MPC) proliferation under both experimental conditions. During fasting, the number of 5-ethynyl-2'-deoxyuridinepositive (EdU+) cells decreased along with myogenic regulatory factors (MRF) mRNA levels related to myoblast proliferation and differentiation, and the muscle stem cell-markerPax7 mRNA level increased. Analysis of myomere cross-sectional area, distribution of muscle fiber sizes and number of fibers per myomere showed that muscle hypertrophy but not hyperplasia was inhibited during fasting. Both higher igf2 mRNA level and the persistence of cell proliferation could be supporting new myofibre formation. On the other hand, an exacerbated MPC proliferation occurred during catch-up growth, and this increase in cell number could be contributing to the growth of both pre-existing and newly form small fibers. The finding that some MPCs proliferate during fasting and that muscle growth mechanisms, hyperplasia and hypertrophy, are differentially regulated could help to explain why re-fed fish could growth at higher rates, and why they return to the lost growth trajectory.

2003 ◽  
Vol 23 (15) ◽  
pp. 5401-5408 ◽  
Author(s):  
Neuza Lopes ◽  
David Gregg ◽  
Sanjay Vasudevan ◽  
Hamdy Hassanain ◽  
Pascal Goldschmidt-Clermont ◽  
...  

ABSTRACT Thrombospondin 2 (TSP2) is a matricellular protein controlling the apoptosis-proliferation balance in endothelial cells. Little is known about its transcriptional regulation compared with that of TSP1. We found that overexpression of a constitutively active mutant of Rac (RacV12) specifically increases TSP2 mRNA levels without affecting TSP1 in human aortic endothelial cells (HAEC). Moreover, TSP2 induction by RacV12 is dependent upon reactive oxygen species (ROS) production, as gp91ds-tat peptide, an inhibitor of NADPH oxidase, and the flavoprotein inhibitor diphenylene iodinium (DPI) block TSP2 synthesis. Furthermore, we found that increasing RacV12 expression results in a biphasic proliferative curve, with proliferation initially increasing as RacV12 expression increases and then returning to levels less than that of control cells at higher expression. This growth inhibition is mediated by TSP2, as either DPI treatment, which blocks TSP2 synthesis, or pan-TSP blocking antibodies restore the proliferative ability of HAEC with high expression. Mechanistically, we show that the effect of TSP2 on cell proliferation is independent of the antiangiogenic TSP2 Hep1 sequence, which is capable of altering actin cytoskeletal reorganization but not proliferation in our experimental conditions. Finally, we show in vivo that Rac-induced TSP2 expression is observed in the aorta of transgenic mice selectively expressing RacV12 in smooth muscle cells. These results identify Rac-induced ROS as a new pathway involved in the regulation of TSP2 expression.


2018 ◽  
Vol 18 (3) ◽  
pp. 287-294 ◽  
Author(s):  
Gustavo Alencastro Veiga Cruzeiro ◽  
Maristella Bergamo dos Reis ◽  
Vanessa Silva Silveira ◽  
Regia Caroline Peixoto Lira ◽  
Carlos Gilberto Carlotti Jr ◽  
...  

Background: Genetic and epigenetic modifications are closely related to tumor initiation and progression and can provide guidance for understanding tumor functioning, potentially leading to the discovery of new therapies. Studies have associated hypoxia-related genes to tumor progression and chemo/radioresistance in brain tumors. Information on the expression profile of hypoxiarelated genes in pediatric medulloblastoma, although scarce, may reveal relevant information that could support treatment decisions. Objective: Our study focused on evaluation the of CA9, CA12, HIF1A, EPAS1, SCL2A1 and VEGF genes in 41 pediatric fresh-frozen medulloblastoma sample. Additionally, we analyzed the effect of hypoxia and normoxia in the pediatric medulloblastoma cell-line UW402. Furthermore, we assessed the effects of HIF1A knockdown in cell-proliferation and methylation levels of genes related to hypoxia, apoptosis and autophagy. Method: qPCR was performed to evaluate mRNA levels, and Western blot to confirm HIF1A silencing in both patient samples and cell line. Pyrosequencing was performed to asses the methylation levels after HIF1A knockdown in the UW402 cell line. Results: A higher HIF1A mRNA level was observed in MB patients when compared to the cerebellum (non-tumor match). In UW402 MB cell-line, chemically induced hypoxic resulted in an increase of mRNA levels of HIF1A, VEGF, SCL2A1 and CA9 genes. Additionally, HIF1A knockdown induced a decrease in the expression of hypoxia related genes and a decrease of 30% in cell proliferation was also observed. Also, a significant increase in the methylation of ATG16L1 promoter and decrease in the methylation of EPAS1 promoter were observed after HIF1A knockdown. Conclusion: HIF1A knockdown in medulloblastoma cells lead to decreased cellular proliferation, suggesting that HIF1A can be a potential therapeutic target to be explored in the medulloblastoma. However, the mechanisms behind HIF1A protein stabilization and function are very complex and more data need to be generated to potentially use HIF1A as a therapeutical target.


2020 ◽  
Vol 40 (15) ◽  
Author(s):  
Dingyang Li ◽  
Zhe Tang ◽  
Zhiqiang Gao ◽  
Pengcheng Shen ◽  
Zhaochen Liu ◽  
...  

ABSTRACT It has been found that the circular RNA (circRNA) CDR1as is upregulated in cholangiocarcinoma (CCA) tissues. In this study, we tried to explore the roles of CDR1as in CCA. CDR1as was overexpressed or knocked down in human CCA cells to assess the effects of CDR1as on cell behaviors and tumor xenograft growth. In vitro, the CDR1as level was significantly increased in CCA cell lines. The results showed that CDR1as promoted the cell proliferation, migration, invasion, and activation of the AKT3/mTOR pathway in CCA cells. Moreover, miR-641, a predicted target microRNA (miRNA) of CDR1as, could partially reverse the effects of CDR1as on cell behaviors in CCA cells. Furthermore, CDR1as improved tumor xenograft growth, and it could be attenuated by miR-641 in vivo. Additionally, CDR1as expression was inversely correlated with miR-641 in CCA cells, and miR-641 could directly bind with CDR1as and its target genes, the AKT3 and mTOR genes. Mechanistically, CDR1as could bind with miR-641 and accelerate miR-641 degradation, which possibly leads to the upregulation of the relative mRNA levels of AKT3 and mTOR in RBE cells. In conclusion, our findings indicated that CDR1as might exert oncogenic properties, at least partially, by regulating miR-641 in CCA. CDR1as and miR-641 could be considered therapeutic targets for CCA.


2001 ◽  
Vol 281 (1) ◽  
pp. R302-R309 ◽  
Author(s):  
Orna Halevy ◽  
Alon Krispin ◽  
Yael Leshem ◽  
John P. McMurtry ◽  
Shlomo Yahav

Exposure of young chicks to thermal conditioning (TC; i.e., 37°C for 24 h) resulted in significantly improved body and muscle growth at a later age. We hypothesized that TC causes an increase in satellite cell proliferation, necessary for further muscle hypertrophy. An immediate increase was observed in satellite cell DNA synthesis in culture and in vivo in response to TC of 3-day-old chicks to levels that were significantly higher than those of control chicks. This was accompanied by a marked induction of insulin-like growth factor-I (IFG-I), but not hepatocyte growth factor in the breast muscle. No significant difference between treatments in plasma IGF-I levels was observed. A marked elevation in muscle regulatory factors on day 5, followed by a decline in cell proliferation on day 6together with continuous high levels of IGF-I in the TC chick muscle may indicate accelerated cell differentiation. These data suggest a central role for IGF-I in the immediate stimulation of satellite cell myogenic processes in response to heat exposure.


1994 ◽  
Vol 267 (2) ◽  
pp. L128-L136
Author(s):  
J. Rami ◽  
W. Stenzel ◽  
S. M. Sasic ◽  
C. Puel-M'Rini ◽  
J. P. Besombes ◽  
...  

Silica instillation causes a massive increase in lung surfactant. Two populations of type II pneumocytes can be isolated from rats administered silica by intratracheal injection: type IIA cells similar to type II cells from normal rats and type IIB cells, which are larger and contain elevated levels of surfactant protein A and phospholipid. Activities of choline-phosphate cytidylyltransferase, a rate-regulatory enzyme in phosphatidylcholine biosynthesis, and fatty-acid synthase (FAS) are increased in type IIB cells isolated from rats 14 days after silica injection. In the present study, we examined the increase in FAS and cytidylyltransferase activities in type IIB cells as a function of time after silica administration. FAS activity increased rapidly, was approximately threefold elevated 1 day after silica administration and has reached close to the maximum increase by 3 days. Cytidylyltransferase activity was not increased on day 1, was significantly increased on day 3 but was not maximally increased until day 7. Inhibition of de novo fatty-acid biosynthesis, by in vivo injection of hydroxycitric acid and inclusion of agaric acid in the type II cell culture medium, abolished the increase in cytidylyltransferase activity on day 3 but not FAS and had no effect on activities of two other enzymes of phospholipid synthesis. FAS mRNA levels were not increased in type IIB cells isolated 1-14 days after silica injection. These data show that the increase in FAS activity in type IIB cells is an early response to silica, that it mediates the increase in cytidylyltransferase activity, and that it is not due to enhanced FAS gene expression.


Endocrinology ◽  
2005 ◽  
Vol 146 (1) ◽  
pp. 156-163 ◽  
Author(s):  
V. M. Navarro ◽  
J. M. Castellano ◽  
R. Fernández-Fernández ◽  
S. Tovar ◽  
J. Roa ◽  
...  

Loss-of-function mutations of the gene encoding GPR54, the putative receptor for the KiSS-1-derived peptide metastin, have been recently associated with hypogonadotropic hypogonadism, in both rodents and humans. Yet the actual role of the KiSS-1/GPR54 system in the neuroendocrine control of gonadotropin secretion remains largely unexplored. To initiate such analysis, the effects of KiSS-1 peptide on LH secretion were monitored using in vivo and in vitro settings under different experimental conditions. Central intracerebroventricular administration of KiSS-1 peptide potently elicited LH secretion in vivo over a range of doses from 10 pmol to 1 nmol. The effect of centrally injected KiSS-1 appeared to be mediated via the hypothalamic LHRH. However, no effect of central administration of KiSS-1 was detected on relative LHRH mRNA levels. Likewise, systemic (ip and iv) injection of KiSS-1 markedly stimulated LH secretion. This effect was similar in terms of maximum response to that of central administration of KiSS-1 and might be partially attributed to its ability to stimulate LH secretion directly at the pituitary. Finally, the LH-releasing activity of KiSS-1 was persistently observed after blockade of endogenous excitatory amino acid and nitric oxide pathways, i.e. relevant neurotransmitters in the neuroendocrine control of LH secretion. In summary, our results provide solid evidence for a potent stimulatory effect of KiSS-1 on LH release, acting at central levels (likely the hypothalamus) and eventually at the pituitary, and further document a novel role of the KiSS-1/GPR54 system as a relevant downstream element in the neuroendocrine network governing LH secretion.


2004 ◽  
Vol 08 (01) ◽  
pp. 1-12 ◽  
Author(s):  
Andrea L. Clark ◽  
Linda Mills ◽  
David A Hart ◽  
Walter Herzog

Mechanical loading of articular cartilage affects the synthesis and degradation of matrix macromolecules. Much of the work in this area has involved mechanical loading of articular cartilage explants or cells in vitro and assessing biological responses at the mRNA and protein levels. In this study, we developed a new experimental technique to load an intact patellofemoral joint in vivo using muscle stimulation. The articular cartilages were cyclically loaded for one hour in a repeatable and measurable manner. Cartilage was harvested from central and peripheral regions of the femoral groove and patella, either immediately after loading or after a three hour recovery period. Total RNA was isolated from the articular cartilage and biological responses were assessed on the mRNA level using the reverse transcriptase-polymerase chain reaction. Articular cartilage from intact patellofemoral joints demonstrated heterogeneity at the mRNA level for six of the genes assessed independent of the loading protocol. Cyclical loading of cartilage in its native environment led to alterations in mRNA levels for a subset of molecules when assessed immediately after the loading period. However, the increases in TIMP-1 and decreases in bFGF mRNA levels were transient; being present immediately after load application but not after a three hour recovery period.


2010 ◽  
Vol 298 (3) ◽  
pp. F807-F817 ◽  
Author(s):  
Renfang Song ◽  
Melissa Spera ◽  
Colleen Garrett ◽  
Samir S. El-Dahr ◽  
Ihor V. Yosypiv

ANG II AT2 receptor (AT2R)-deficient mice exhibit abnormal ureteric bud (UB) budding, increased incidence of double ureters, and vesicoureteral reflux. However, the role of the AT2R during UB morphogenesis and the mechanisms by which aberrant AT2R signaling disrupts renal collecting system development have not been fully defined. In this study, we mapped the expression of the AT2R during mouse metanephric development, examined the impact of disrupted AT2R signaling on UB branching, cell proliferation, and survival, and investigated the cross talk of the AT2R with the glial-derived neurotrophic factor ( GDNF)/ c-Ret/Wnt11 signaling pathway. Embryonic mouse kidneys express AT2R in the branching UB and the mesenchyme. Treatment of embryonic day 12.5 ( E12.5) metanephroi with the AT2R antagonist PD123319 or genetic inactivation of the AT2R in mice inhibits UB branching, decreasing the number of UB tips compared with control (34 ± 1.0 vs. 43 ± 0.6, P < 0.01; 36 ± 1.8 vs. 48 ± 1.3, P < 0.01, respectively). In contrast, treatment of metanephroi with the AT2R agonist CGP42112 increases the number of UB tips compared with control (48 ± 1.8 vs. 39 ± 12.3, P < 0.05). Using real-time quantitative RT-PCR and whole mount in situ hybridization, we demonstrate that PD123319 downregulates the expression of GDNF, c-Ret, Wnt11, and Spry1 mRNA levels in E12.5 metanephroi grown ex vivo. AT2R blockade or genetic inactivation of AT2R stimulates apoptosis and inhibits proliferation of the UB cells in vivo. We conclude that AT2R performs essential functions during UB branching morphogenesis via control of the GDNF/c-Ret/Wnt11 signaling pathway, UB cell proliferation, and survival.


2003 ◽  
Vol 95 (2) ◽  
pp. 555-562 ◽  
Author(s):  
Michael I. Lewis ◽  
Hongyan Li ◽  
Zhi-Shen Huang ◽  
Manmohan S. Biring ◽  
Bojan Cercek ◽  
...  

This study evaluated the impact of varying degrees of prolonged malnutrition on the local insulin-like growth factor-I (IGF-I) system in the costal diaphragm muscle. Adult rats were provided with either 60 or 40% of usual food intake over 3 wk. Nutritionally deprived (ND) animals (i.e., ND60 and ND40) were compared with control (Ctl) rats fed ad libitum. Costal diaphragm fiber types and cross-sectional areas were determined histochemically. Costal diaphragm muscle IGF-I mRNA levels were determined by RT-PCR. Serum and muscle IGF-I peptide levels were determined by using a rat-specific radioimmunoassay. The body weights of Ctl rats increased by 5%, whereas those of ND60 and ND40 animals decreased by 16 and 26%, respectively. Diaphragm weights were reduced by 17 and 27% in ND60 and ND40 animals, respectively, compared with Ctl. Diaphragm fiber proportions were unaffected by either ND regimen. Significant atrophy of both type IIa and IIx fibers was noted in the ND60 group, whereas atrophy of all three fiber types was observed in the diaphragm of ND40 rats. Serum IGF-I levels were reduced by 62 and 79% in ND60 and ND40 rats, respectively, compared with Ctl. Diaphragm muscle IGF-I mRNA levels in both ND groups were similar to those noted in Ctl. In contrast, IGF-I concentrations were reduced by 36 and 42% in the diaphragm muscle of ND60 and ND40 groups, respectively, compared with Ctl. We conclude that the local (autocrine/paracrine) muscle IGF-I system is affected in our models of prolonged ND. We propose that this contributes to disordered muscle protein turnover and muscle cachexia with atrophy of muscle fibers. This is particularly so in view of recent data demonstrating the importance of the autocrine/paracrine system in muscle growth and maintenance of fiber size.


Sign in / Sign up

Export Citation Format

Share Document