An investigation of the effects of lorry suspension performance on road maintenance costs

Author(s):  
M Costanzi ◽  
D Cebon

A mathematical model of the interaction between a fleet of heavy vehicles and a spraysealed road surface is developed and validated using field performance data. Key features of the model include: (a) modelling the dynamic performance of the vehicle fleet using an ensemble of ‘quarter car’ vehicle models; (b) careful accounting for the ‘spatial repeatability’ of tyre forces; (c) use of accelerated pavement performance test data to model the evolution of the road surface profile; (d) surface maintenance intervention based on permanent deformation (rutting), potholing and excessive surface roughness. The model is used to predict long-term road maintenance intervention costs and to compare the predicted road maintenance costs for various suspension scenarios in the vehicle fleet. The simulation results indicate that conversion of the heavy vehicle fleet from conventional leaf spring suspensions to ‘road-friendly’ suspensions would results in a reduction in road maintenance costs per tonne-km of 14 per cent. Increasing the freight load by 3.0 tonnes per vehicle would reduce this benefit to approximately 1 per cent. If the fleet was to have 50 per cent poorly maintained shock absorbers, the simulations show an increase in road maintenance expenditures per tonne-km: about 5 per cent higher than conventional suspensions at the lower weights and 21 per cent higher at the higher weights.

Author(s):  
Thomas L. Davies ◽  
Tami F. Wall ◽  
Allan Carpentier

After examination of the research carried out by other agencies, Saskatchewan Highways and Transportation (SHT) embarked on an initiative to adapt low tire pressure technologies to the province's needs and environment. The focus of the initiative was to explore several technical questions from SHT's perspective: (a) Can low tire pressures be used to increase truck weights from secondary to primary without increasing road maintenance costs on thin membrane surface roads? (b) What are the short- and long-term effects of tire heating under high-speed/high-deflection constant reduced pressure (CRP) operations in a Saskatchewan environment? (c) What effects do lower tire pressures have on vehicle stability at highway speeds? To date, significant opportunities have been noted on local hauls (less than 30 min loaded at highway speeds) for CRP operation and long primary highway hauls that begin or end in relatively short secondary highway sections that limit vehicle weight allowed for the whole trip for central tire inflation technology. The background and environment for the initiative and the investigations and demonstrations envisioned and undertaken are briefly outlined.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2249
Author(s):  
Bei Chen ◽  
Fuqiang Dong ◽  
Xin Yu ◽  
Changjiang Zheng

In order to solve the problems caused by asphalt diseases and prolong the life cycle of asphalt pavement, many studies on the properties of modified asphalt have been conducted, especially polyurethane (PU) modified asphalt. This study is to replace part of the styrene-butadiene-styrene (SBS) modifier with waste polyurethane (WP), for preparing WP/SBS composite modified asphalt, as well as exploring its properties and microstructure. On this basis, this paper studied the basic performance of WP/SBS composite modified asphalt with a conventional performance test, to analyze the high- and low-temperature rheological properties, permanent deformation resistance and storage stability of WP/SBS composite modified asphalt by dynamic shear rheometer (DSR) and bending beam rheometer (BBR) tests. The microstructure of WP/SBS composite modified asphalt was also observed by fluorescence microscope (FM) and Fourier transform infrared spectroscopy (FTIR), as well as the reaction between WP and asphalt. According to the results of this study, WP can replace SBS as a modifier to prepare WP/SBS composite modified asphalt with good low-temperature resistance, whose high-temperature performance will be lower than that of SBS modified asphalt. After comprehensive consideration, 4% SBS content and 15% WPU content (4 S/15 W) are determined as the suitable types of WPU/SBS composite modified asphalt.


2019 ◽  
Vol 46 (6) ◽  
pp. 511-521
Author(s):  
Lian Gu ◽  
Tae J. Kwon ◽  
Tony Z. Qiu

In winter, it is critical for cold regions to have a full understanding of the spatial variation of road surface conditions such that hot spots (e.g., black ice) can be identified for an effective mobilization of winter road maintenance operations. Acknowledging the limitations in present study, this paper proposes a systematic framework to estimate road surface temperature (RST) via the geographic information system (GIS). The proposed method uses a robust regression kriging method to take account for various geographical factors that may affect the variation of RST. A case study of highway segments in Alberta, Canada is used to demonstrate the feasibility and applicability of the method proposed herein. The findings of this study suggest that the geostatistical modelling framework proposed in this paper can accurately estimate RST with help of various covariates included in the model and further promote the possibility of continuous monitoring and visualization of road surface conditions.


2012 ◽  
Vol 39 (7) ◽  
pp. 824-833 ◽  
Author(s):  
Sangyum Lee ◽  
Cheolmin Baek ◽  
Je-Jin Park

This paper presents the performance evaluation of unmodified and lime-modified hot mix asphalt (HMA) mixtures at varying asphalt content using asphalt mixture performance test developed from National Cooperative Highway Research Program project 9-19 and 9-29 and the viscoelastic continuum damage finite element analysis. Test methods adopted in this study are the dynamic modulus test for stiffness, the triaxial repeated load permanent deformation test for rutting, and the direct tension test for fatigue cracking. The findings from this study support conventional understanding of the effects of asphalt content and lime modification on the fatigue cracking and rutting performance. Finally, the optimum asphalt content for both lime-modified and unmodified mixtures are proposed based on the knowledge gleaned from the performance-based mix design methodology. With additional validation and calibration, the comprehensive methodology described in this paper may serve as the foundation for a performance-based HMA mix design and performance-related HMA specifications.


Author(s):  
Ke Li ◽  
Bo Yu ◽  
Zhaoyao Shi ◽  
Zanhui Shu ◽  
Rui Li

With the development of gears towards high temperature, high pressure, high speed and high stress, gear measurement, in which only the static geometric accuracy is considered, is unable to meet the current application requirements. While, the low precision and single function gear tester constrains the measurement of gear dynamic performance. For the resolution of this problem, based on the principle of gear system dynamics and several precision mechanical design techniques, a gear dynamic testing machine has been developed, providing new instruments for gear testing. On the basis of research of the principle of dynamic performance test, the primary measurement items of the testing machine have been determined. The measuring principles of each item and the driving and loading form of the testing machine have been examined. The measurement and control system of the testing machine and its corresponding software have been developed. The instrument can not only obtain the static precision index of the gear, but also obtain the dynamic performance index of the gear in variable working conditions. According to the actual test, the uncertainty of instrument is 3.8 μm and the external disturbance caused by the shaft vibration is less than 0.6 μm, which can meet the 5–6 grade precision gear testing requirement.


Author(s):  
Shiping Yao ◽  
Colin Morgan ◽  
Nigel J. Leighton

Abstract The basic characteristic of a conventional spring is that of a constant rate, that is a linear force-displacement relationship. If, however, a flat, thin leaf spring is end-loaded past its buckling point it will deform into a curve and the resulting force-displacement relationship can be made virtually flat; that is a very low effective rate is seen, once the buckling force is exceeded. A novel form of automotive active suspension system proposed by Leighton & Pullen (1994) relies upon the “buckled spring” element acting through a variable geometry wishbone assembly to provide wheel to body forces that are controllable by a low power actuator but are virtually independent of wheel to body displacement. The dynamic behavior of the spring element is also significant, since resonance effects may affect the vibration isolating properties of the suspension system and may result in unstable modes of motion. This paper presents a rigorous derivation of the static and dynamic characteristic of the spring element and of the effect of design compromises that are essential for practical application. Comparison of the experimental and simulation results shows that the simulation can be used to predict the static and dynamic performance of the spring.


2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Lawrence Atepor ◽  

Chaotic Vibrations are considered for a quarter-car model excited by the road surface profile. The equation of motion is obtained in the form of a classical Duffing equation and it is modeled with deliberate introduction of parametric excitation force term to enable us manipulate the behavior of the system. The equation of motion is solved using the Method of Multiple Scales. The steady-state solutions with and without the parametric excitation force term is investigated using NDSolve MathematicaTM Code and the nonlinear dynamical system’s analysis is by a study of the Bifurcations that are observed from the analysis of the trajectories, and the calculation of the Lyapunov. In making the system more strongly nonlinear the excitation amplitude value is artificially increased to various multiples of the actual value. Results show that the system’s response can be extremely sensitive to changes in the amplitude and the that chaos is evident as the system is made more nonlinear and that with the introduction of parametric excitation force term the system’s motion becomes periodic resulting in the elimination of chaos and the reduction in amplitude of vibration.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3694
Author(s):  
Chuanxue Song ◽  
Gangpu Yu ◽  
Shuai Yang ◽  
Ruoli Yang ◽  
Yi Sun ◽  
...  

This article summarises the development and experience of the Formula Student race car engine from 2018. According to the technical rules of Formula Student after the change in 2017, this engine adopts a new design concept, employs a 690-mL single-cylinder engine as the base, and applies ‘response enhancement technology’ with supercharging as the core to achieve a high-power output, a wide high-torque range and an excellent response capability. During the development, various studies on the dynamic performance of the vehicle and the engine were conducted, including vehicle dynamics analysis and track simulation, parameter matching of the supercharger and the engine, control strategy design, and the intake and exhaust system design. This research builds a supercharger air flow and efficiency test bench and an engine performance test bench. Test results show that the developed engine can output 122% of the original power and 120% of the original torque with a 20-mm diameter intake restrictor. Compared with previous generation race cars with a turbocharged four-cylinder engine, the new race car‘s 0–100 km/h acceleration time is shortened by 0.2 s, the torque response time under typical condition is shortened by 80%, and the lap time of the integrated circuit is reduced by 7%.


Sign in / Sign up

Export Citation Format

Share Document