Optimum exciter placement for normal mode force appropriation

Author(s):  
J R Wright ◽  
P S Holmes ◽  
M J Desforges ◽  
J E Cooper

A method of predicting optimum exciter placement for normal mode testing using an a priori mathematical dynamic model of the test structure is presented and compared to other approaches. A genetic algorithm is used to perform the search for an optimum where the number of possible combinations is too large for an exhaustive search. The proposed methodology is also shown to provide an estimate of the effective number of modes in a given frequency range. The technique is demonstrated using a mathematical model of a benchmark rectangular perspex plate and the results validated experimentally. The technique is also applied to a model of a representative aircraft structure. Finally, an extension of this methodology, suitable for mid-test exciter optimization, is described.

Author(s):  
Stefan Winter

This chapter re-examines the early development of the ʻAlawi community and its situation in western Syria in the medieval period in the wider context of what might be termed Islamic provincial history. It starts from the premise that the conventional image of the “Nusayris” has largely been fashioned by elite historical sources whose discourse on nonorthodox groups is a priori negative but which, when read against the grain and compared with other sources, can yield a less essentializing, less conflicting account of the community's development. In particular, the chapter aims to show that the ʻAlawi faith was not the deviant, marginal phenomenon it has retrospectively been made out to be but, on the contrary, constituted, and was treated by the contemporary authorities as, a normal mode of rural religiosity in Syria.


2021 ◽  
Vol 13 (1) ◽  
pp. 168781402098732
Author(s):  
Ayisha Nayyar ◽  
Ummul Baneen ◽  
Syed Abbas Zilqurnain Naqvi ◽  
Muhammad Ahsan

Localizing small damages often requires sensors be mounted in the proximity of damage to obtain high Signal-to-Noise Ratio in system frequency response to input excitation. The proximity requirement limits the applicability of existing schemes for low-severity damage detection as an estimate of damage location may not be known  a priori. In this work it is shown that spatial locality is not a fundamental impediment; multiple small damages can still be detected with high accuracy provided that the frequency range beyond the first five natural frequencies is utilized in the Frequency response functions (FRF) curvature method. The proposed method presented in this paper applies sensitivity analysis to systematically unearth frequency ranges capable of elevating damage index peak at correct damage locations. It is a baseline-free method that employs a smoothing polynomial to emulate reference curvatures for the undamaged structure. Numerical simulation of steel-beam shows that small multiple damages of severity as low as 5% can be reliably detected by including frequency range covering 5–10th natural frequencies. The efficacy of the scheme is also experimentally validated for the same beam. It is also found that a simple noise filtration scheme such as a Gaussian moving average filter can adequately remove false peaks from the damage index profile.


2021 ◽  
Vol 40 (4) ◽  
pp. 8493-8500
Author(s):  
Yanwei Du ◽  
Feng Chen ◽  
Xiaoyi Fan ◽  
Lei Zhang ◽  
Henggang Liang

With the increase of the number of loaded goods, the number of optional loading schemes will increase exponentially. It is a long time and low efficiency to determine the loading scheme with experience. Genetic algorithm is a search heuristic algorithm used to solve optimization in the field of computer science artificial intelligence. Genetic algorithm can effectively select the optimal loading scheme but unable to utilize weight and volume capacity of cargo and truck. In this paper, we propose hybrid Genetic and fuzzy logic based cargo-loading decision making model that focus on achieving maximum profit with maximum utilization of weight and volume capacity of cargo and truck. In this paper, first of all, the components of the problem of goods stowage in the distribution center are analyzed systematically, which lays the foundation for the reasonable classification of the problem of goods stowage and the establishment of the mathematical model of the problem of goods stowage. Secondly, the paper abstracts and defines the problem of goods loading in distribution center, establishes the mathematical model for the optimization of single car three-dimensional goods loading, and designs the genetic algorithm for solving the model. Finally, Matlab is used to solve the optimization model of cargo loading, and the good performance of the algorithm is verified by an example. From the performance evaluation analysis, proposed the hybrid system achieve better outcomes than the standard SA model, GA method, and TS strategy.


Author(s):  
Chris Sharp ◽  
Bryony DuPont

Currently, ocean wave energy is a novel means of electricity generation that is projected to potentially serve as a primary energy source in coastal areas. However, for wave energy converters (WECs) to be applicable on a scale that allows for grid implementation, these devices will need to be placed in close relative proximity to each other. From what’s been learned in the wind industry of the U.S., the placement of these devices will require optimization considering both cost and power. However, current research regarding optimized WEC layouts only considers the power produced. This work explores the development of a genetic algorithm (GA) that will create optimized WEC layouts where the objective function considers both the economics involved in the array’s development as well as the power generated. The WEC optimization algorithm enables the user to either constrain the number of WECs to be included in the array, or allow the algorithm to define this number. To calculate the objective function, potential arrays are evaluated using cost information from Sandia National Labs Reference Model Project, and power development is calculated such that WEC interaction affects are considered. Results are presented for multiple test scenarios and are compared to previous literature, and the implications of a priori system optimization for offshore renewables are discussed.


2021 ◽  
Vol 120 (3) ◽  
pp. 333a
Author(s):  
Taylor K. Pullinger ◽  
Matthew Amoni ◽  
Itziar Irurzun-Arana ◽  
Karin R. Sipido ◽  
Eric A. Sobie

2011 ◽  
Vol 467-469 ◽  
pp. 1066-1071
Author(s):  
Zhong Xin Li ◽  
Ji Wei Guo ◽  
Ming Hong Gao ◽  
Hong Jiang

Taking the full-vehicle eight-freedom dynamic model of a type of bus as the simulation object , a new optimal control method is introduced. This method is based on the genetic algorithm, and the full-vehicle optimal control model is built in the MatLab. The weight matrix of the optimal control is optimized through the genetic algorithm; then the outcome is compared with the artificially-set optimal control simulation, which shows that the genetic-algorithm based optimal control presents better performance, thereby creating a smoother ride and improving the steering stability of the vehicle.


2008 ◽  
Vol 381-382 ◽  
pp. 439-442
Author(s):  
Qi Wang ◽  
Zhi Gang Feng ◽  
K. Shida

Least squares support vector machine (LS-SVM) combined with niche genetic algorithm (NGA) are proposed for nonlinear sensor dynamic modeling. Compared with neural networks, the LS-SVM can overcome the shortcomings of local minima and over fitting, and has higher generalization performance. The sharing function based niche genetic algorithm is used to select the LS-SVM parameters automatically. The effectiveness and reliability of this method are demonstrated in two examples. The results show that this approach can escape from the blindness of man-made choice of LS-SVM parameters. It is still effective even if the sensor dynamic model is highly nonlinear.


2017 ◽  
Vol 23 (3) ◽  
pp. 420-432 ◽  
Author(s):  
Pavel Krejčí ◽  
Adrien Petrov

The third-body concept is a pragmatic tool used to understand the friction and wear of sliding materials. The wear particles play a crucial role in this approach and constitute the main part of the third-body. This paper aims to introduce a mathematical model for the motion of a third-body interface separating two surfaces in contact. This model is written in accordance with the formalism of hysteresis operators as solution operators of the underlying variational inequalities. The existence result for this dynamical problem is obtained by using a priori estimates established for Faedo–Galerkin approximations, and some more specific techniques such as anisotropic Sobolev embedding theory.


2019 ◽  
Vol 20 (3) ◽  
pp. 215-228 ◽  
Author(s):  
Tetiana Butko ◽  
Mykhailo Muzykin ◽  
Andrii Prokhorchenko ◽  
Halyna Nesterenko ◽  
Halyna Prokhorchenko

Abstract The article proposes a method for determining the rational motion intensity of specific train traffic flows on railway transport corridors with account for balance of expenses on traction resources and cargo owners. A mathematical model based on stochastic optimization is developed, which allows to optimize, in the conditions of risks, the interval between trailing trains on the railway lines taking into account the limited resources of the traction rolling stock, the capacity of the stations and freight fronts at the cargo destination point. Solving this mathematical model allows to find a balance between the expenses for movement of train traffic flows from different railway lines to their terminal reference station and the expenses of a consignee, subject to the limitations of the technological logistics chain in cargo transportation. For the solution of this mathematical model, a Real-coded Genetic Algorithm (RGA) was used.


Sign in / Sign up

Export Citation Format

Share Document