Collision–induced absorption in gaseous methane at low temperatures

1986 ◽  
Vol 64 (7) ◽  
pp. 763-767 ◽  
Author(s):  
I. R. Dagg ◽  
A. Anderson ◽  
S. Yan ◽  
W. Smith ◽  
C. G. Joslin ◽  
...  

A recently developed theory for collision-induced absorption in methane is compared with experimental results over a wider spectral range and at lower temperatures than previously reported. The present experimental results covering the frequency range below 400 cm−1 exhibit good agreement with other recently published data. The theory shows excellent agreement with experiment in the low-frequency region below approximately 200 cm−1 but underestimates the experimental data somewhat at higher frequencies. Possible theoretical reasons for this discrepancy are given. The theory represents a simple method of obtaining a good estimate of the collision-induced absorption spectra of methane in this frequency region and for extrapolating to lower temperatures for which experimentation is not feasible. In addition, the moments α1 and γ1are compared with earlier determinations and indicate good agreement with the previously obtained values for the octupole and hexadecapole moments of methane.

1995 ◽  
Vol 05 (04) ◽  
pp. 589-606 ◽  
Author(s):  
MARIAN K. KAZIMIERCZUK

A quasi-steady state approximation is used to derive expressions for the waveforms of minority carrier charge stored in p+nn+ power junction diodes driven by large-signal sinusoidal and ramp voltages. These waveforms are derived by solving a diode charge-control differential equation. Using the charge waveforms, the storage time is determined and the diode current and voltage waveforms are predicted. It is shown that three frequency ranges can be distinguished: (1) low-frequency range in which the reverse recovery is negligible, (2) mid-frequency range in which the reverse recovery is detrimental, but the diode is still of practical value, and (3) high-frequency range where the diode does not exhibit its rectifying properties. A simple method for measuring the minority carrier lifetime is proposed. Experimental results are given for an MR826 fast-recovery pn junction diode and a 31DQ06 Schottky diode for operating frequencies of up to 10 MHz. The theoretical and experimental results were in good agreement.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
S. S. Gómez ◽  
A. Metrikine ◽  
B. Carboni ◽  
W. Lacarbonara

In this paper, identification of energy dissipation in the joints of a lab-scale structure is accomplished. The identification is carried out by means of an energy flow analysis and experimental data. The devised procedure enables to formulate an energy balance in the vicinity of the joints to obtain local energy dissipation. In this paper, a damping matrix based on the locally identified damping coefficients is formulated. The formulated damping matrix is later used in a five-degrees-of-freedom (5DOF) system for validation. The results obtained with the proposed method are in good agreement with the experimental data, especially in the low frequency range.


2013 ◽  
Vol 321-324 ◽  
pp. 495-498 ◽  
Author(s):  
Dong Chen ◽  
Chao Xu

The reflectivity, loss function, refractive index, extinction coefficient and dielectric function of the LaNi5and LaNi4.5Sn0.5intermetallic compounds are investigated through the plane-wave pseudo-potential method based on the density functional theory. The effects of Sn impurity are discussed and some interesting features are found in the low frequency region. Some important optical properties such as static dielectric constant and static refractive index are obtained. The equation [n (0)]2=ε1(0)is satisfied according to our calculation, which indicates that our results are correct and reasonable. Nevertheless, the calculated results need to be testified in the future due to the lack of experimental data.


2007 ◽  
Vol 280-283 ◽  
pp. 919-924
Author(s):  
M.S. Jogad ◽  
V.K. Shrikhande ◽  
A.H. Dyama ◽  
L.A. Udachan ◽  
Govind P. Kothiyal

AC and DC conductivities have been measured by using the real (e¢) and imaginary (e¢¢) parts of the dielectric constant data of glass and glass-ceramics (GC) at different temperatures in the rage 297-642K and in the frequency range 100 Hz to 10 MHz. Using Anderson –Stuart model, we have calculated the activation energy, which is observed to be lower than that of the DC conductivity. The analysis for glass/glass-ceramics indicates that the conductivity variation with frequency exhibits an initial linear region followed by nonlinear region with a maximum in the high-frequency region. The observed frequency dependence of ionic conductivity has been analyzed within the extended Anderson–Stuart model considering both the electrostatic and elastic strain terms. In glass/glassceramic the calculations based on the Anderson-Stuart model agree with the experimental observations in the low frequency region but at higher frequencies there is departure from measured data.


2011 ◽  
Vol 8 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Nelu Blaž ◽  
Andrea Marić ◽  
Goran Radosavljević ◽  
Nebojša Mitrović ◽  
Ibrahim Atassi ◽  
...  

This paper offers an effective, accurate, and simple method for permittivity and permeability determination of an LTCC (low temperature cofired ceramic) ferrite sample. The presented research can be of importance in the fields of ferrite component design and application, as well as for RF and microwave engineering. The characterization sample is a stack of LTCC tapes forming a toroid. Commercially available ferrite tape ESL 40012 was used and standard LTCC processing was applied for the sample fabrication. For the first time, the electrical properties of a ferrite toroid sample of ESL 40012 LTCC ferrite tape is presented at various frequencies. The electrical properties of LTCC ferrite materials, permittivity and specific resistivity, are shown in a frequency range from 10 kHz to 1 MHz using the capacitive method. The hysteresis properties of this material are also determined. B-H hysteresis loops were measured applying a maximum excitation of 2 kA/m and frequencies of 50 Hz, 500 Hz, and 1000 Hz. Permeability is determined in the frequency range from 10 kHz to 1 GHz and a characterization procedure is divided in two segments, for low and high frequencies. Low frequency measurements (from 10 kHz to 1 MHz) are performed using LCZ meter and discrete turns of wire, while a short coaxial sample holder and vector network analyzer were used for the higher frequency range (from 300 kHz to 1 GHz). In addition, another important factor required for the practical design of devices is presented, the temperature variation of the permeability dispersion parameters.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Chunyu Fu ◽  
Dawei Tong ◽  
Yuyang Wang

Concrete cracking causes a gradual change in strain distributions along the cross section height of reinforced concrete beams, which will finally affect their instantaneous stiffness. A method for assessing the stiffness is proposed based on the gradual change, which is considered through modeling different strain distributions for key sections in cracked regions. Internal force equilibria are adopted to find a solution to top strains and neutral axes in the models, and then the inertias of the key sections are calculated to assess the beam stiffness. The proposed method has been validated using experimental results obtained from tests on five reinforced concrete beams. The predicted stiffness and displacements are shown to provide a good agreement with experimental data. The instantaneous stiffness is proven to greatly depend on the crack number and depth. This dependence can be exactly reflected by the proposed method through simulating the gradual change in concrete strain distributions.


Author(s):  
In-Hwan Yang ◽  
Mohamed S. El-Genk

Numerical calculations are performed to investigate the effect of viscous dissipation on the temperature rise and friction numbers for laminar water flows in micro-tubes. The calculated values are compared with those determined from reported experimental data for glass and diffused silica micro-tubes (D = 16 – 101 μm and L/D = 625 – 1479). The results confirm a definite slip at the wall with slip lengths of ∼ 0.7 μm and 1.0 μm, which decrease the friction number and the temperature rise in the micro-tubes, but their effect gradually diminishes as either D or L/D increases. The friction number decreases exponentially as D decreases and, to a lesser extent, as L/D increases. The effect of L/D on the friction number is insignificant for micro-tube diameters ≤ 20 μm. For D > 400 μm, the friction number approaches that of Hagen-Posieuille of 64 for macro-tubes when L/D > 1500, but approaches higher values at smaller L/D. The dimensionless analytical expression developed for calculating the friction number and the temperature rise for water flows in micro-tubes is in good agreement with both the numerical and experimental results.


2010 ◽  
Vol 133 (3) ◽  
Author(s):  
J. Michael Owen

Ingress of hot gas through the rim seals of gas turbines can be modeled theoretically using the so-called orifice equations. In Part I of this two-part paper, the orifice equations were derived for compressible and incompressible swirling flows, and the incompressible equations were solved for axisymmetric rotationally induced (RI) ingress. In Part II, the incompressible equations are solved for nonaxisymmetric externally induced (EI) ingress and for combined EI and RI ingress. The solutions show how the nondimensional ingress and egress flow rates vary with Θ0, the ratio of the flow rate of sealing air to the flow rate necessary to prevent ingress. For EI ingress, a “saw-tooth model” is used for the circumferential variation of pressure in the external annulus, and it is shown that ε, the sealing effectiveness, depends principally on Θ0; the theoretical variation of ε with Θ0 is similar to that found in Part I for RI ingress. For combined ingress, the solution of the orifice equations shows the transition from RI to EI ingress as the amplitude of the circumferential variation of pressure increases. The predicted values of ε for EI ingress are in good agreement with the available experimental data, but there are insufficient published data to validate the theory for combined ingress.


Sign in / Sign up

Export Citation Format

Share Document