The Effect of Macro-Roughness on the Performance of Parallel Thrust Bearings

1950 ◽  
Vol 163 (1) ◽  
pp. 149-161 ◽  
Author(s):  
M. E. Salama

This work was initiated to investigate the effect of surface macro-roughness on the performance of the parallel-faces thrust bearing and, at the same time, to find a rational explanation of its behaviour. The problem is treated both theoretically and experimentally and the main result arrived at indicates that macro-roughness is a prime factor in the behaviour of the bearing, as it provides passages which both feed the surfaces with the lubricant and allow the formation of hydrodynamic films so that the performance corresponds closer to that for film lubrication. Further work on micro-roughness is proceeding.

1967 ◽  
Vol 89 (4) ◽  
pp. 439-443 ◽  
Author(s):  
D. D. James ◽  
A. F. Potter

The isothermal Reynolds differential equation of gas film lubrication is written in finite-difference form for numerical analysis of the pressure distribution within spiral-groove thrust bearings and compressors. Appropriate jump equations are presented which provide flow continuity at the land-to-groove interfaces. Gas flow, load support, static stiffness, power consumption, and compressor efficiency are computed and theoretical performance curves are presented for this device. Agreement between computed data and experiment is discussed and presented in graphical form.


2006 ◽  
Vol 58 (4) ◽  
pp. 176-186 ◽  
Author(s):  
N.M. Bujurke ◽  
N.B. Naduvinamani ◽  
Syeda Tasneem Fathima ◽  
S.S. Benchalli

Lubricants ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 44
Author(s):  
Christian Ziese ◽  
Cornelius Irmscher ◽  
Steffen Nitzschke ◽  
Christian Daniel ◽  
Elmar Woschke

The vibration behaviour of turbocharger rotors is influenced by the acting loads as well as by the type and arrangement of the hydrodynamic bearings and their operating condition. Due to the highly non-linear bearing behaviour, lubricant film-induced excitations can occur, which lead to sub-synchronous rotor vibrations. A significant impact on the oscillation behaviour is attributed to the pressure distribution in the hydrodynamic bearings, which is influenced by the thermo-hydrodynamic conditions and the occurrence of outgassing processes. This contribution investigates the vibration behaviour of a floating ring supported turbocharger rotor. For detailed modelling of the bearings, the Reynolds equation with mass-conserving cavitation, the three-dimensional energy equation and the heat conduction equation are solved. To examine the impact of outgassing processes and thrust bearing on the occurrence of sub-synchronous rotor vibrations separately, a variation of the bearing model is made. This includes run-up simulations considering or neglecting thrust bearings and two-phase flow in the lubrication gap. It is shown that, for a reliable prediction of sub-synchronous vibrations, both the modelling of outgassing processes in hydrodynamic bearings and the consideration of thrust bearing are necessary.


1977 ◽  
Vol 99 (1) ◽  
pp. 82-88 ◽  
Author(s):  
I. Etsion ◽  
D. P. Fleming

A flat sector shaped pad geometry for gas lubricated thrust bearings is analyzed considering both pitch and roll angles of the pad and the true film thickness distribution. Maximum load capacity is achieved when the pad is tilted so as to create a uniform minimum film thickness along the pad trailing edge. Performance characteristics for various geometries and operating conditions of gas thrust bearings are presented in the form of design curves. A comparison is made with the rectangular slider approximation. It is found that this approximation is unsafe for practical design, since it always overestimates load capacity.


2000 ◽  
Vol 123 (3) ◽  
pp. 501-508 ◽  
Author(s):  
S. Yoshimoto ◽  
K. Kohno

Recently, graphite porous material has been used successfully in an aerostatic bearing. In actual bearing design, it is often necessary to reduce the thickness of porous material to make the bearing smaller. However, a reduction in thickness results in a reduction in the strength of the porous material. In particular, when the diameter of porous material is large, it is difficult to supply the air through the full pad area of porous material because it deforms. Therefore, in this paper, two types of air supply method (the annular groove supply and the hole supply) in a circular aerostatic porous thrust bearing are proposed to avoid the deflection of the bearing surface. The static and dynamic characteristics of aerostatic porous bearing with these air supply methods are investigated theoretically and experimentally. In addition, the effects of a surface restricted layer on the characteristics are clarified.


2017 ◽  
Vol 69 (2) ◽  
pp. 105-115 ◽  
Author(s):  
Abdelrasoul M. Gad

Purpose Compliant foil thrust bearings are promising bearings for high-speed oil-free turbomachinery. However, most previous experimental and numerical approaches to investigate the performance of these bearings have ignored the effect of bearing runner misalignment. Therefore, this paper aims to evaluate the effects of static and dynamic angular misalignments of the bearing runner on the performance of a gas-lubricated foil thrust bearing. Design/methodology/approach The bearing runner is allowed a maximum angular misalignment that produces a minimum gas film thickness as low as 20 per cent of the nominal clearance. Then, the variations of bearing load carrying capacity, viscous power loss and stiffness and damping coefficients of the gas film with runner misalignment are thoroughly analyzed. The flow in the gas film is modeled with compressible Reynolds equation along with the Couette approximation technique, and the deformation of the compliant bearing is calculated with a robust analytical model. Small perturbations method is used to calculate the force and moment dynamic coefficients of the gas film. Findings The results show that misaligned foil thrust bearings are capable of developing a restoring moment sufficient enough to withstand the imposed misalignments. Furthermore, the enhanced hydrodynamic effect ensures a stable operation of the misaligned bearing, and the results highlighted the role of the compliant bearing structure to maintain foil bearing prominent features even at misaligned conditions. Originality/value The value of this study is the evaluation of the effects of runner angular misalignments on the static and dynamic characteristics of Generation II bump-type foil thrust bearing.


Author(s):  
György Szász ◽  
George T. Flowers

Abstract A study of bladed-disk vibration control using magnetic bearings is presented. A key issue is a method for achieving practical controllability for such a system. For a tuned or symmetrically mistuned bladed disk assembly, several vibration modes are coupled only to the axial dynamics. Magnetic thrust bearings generally lack sufficient bandwidth to control even moderately high frequency vibration. A simplified model is developed and used to identify controllable vibration modes. A control strategy based upon deliberately mistuning in a non-symmetric manner is developed. The method presented does not require a thrust bearing for complete controllability of a bladed disk assembly via hub based actuators. However, since the linearized model for such a system has time periodic coefficients, an advanced time period controller is required. Controlling time periodic systems is a significant engineering challenge. One innovative approach that seems to be especially promising involves application of the Lyapunov Floquet (LF) transformation to eliminate time periodic terms from the system state matrices. Traditional control design techniques are then applied and the resulting gains transformed back to the original domain. Some simulation results are presented and discussed to illustrate the method.


1959 ◽  
Vol 26 (3) ◽  
pp. 337-340
Author(s):  
C. F. Kettleborough

Abstract The problem of the stepped-thrust bearing is considered but, whereas normally volumetric continuity is assumed, the equations are solved assuming mass continuity; i.e., the variation of density is also considered as well as the effect of the stepped discontinuity on the load-carrying capacity and the coefficient of friction. Computed theoretical curves illustrate the importance of the density on the operation of this bearing and, in part, explain results already published.


Sign in / Sign up

Export Citation Format

Share Document