Calculations of a Curved-Pipe Flow Using Reynolds Stress Closure

Author(s):  
Y G Lai ◽  
R M C So ◽  
M Anwer ◽  
B C Hwang

It has been observed that as a fully developed turbulent flow enters a curved bend the anisotropy of the normal stresses near the outer bend (furthest from the centre of the bend curvature) increases. According to the arguments of vorticity generation, a sudden increase in the anisotropy of the normal stresses may lead to the formation of a secondary flow of the second kind. If this secondary motion is to be calculated, then a near-wall Reynolds stress closure that can mimic the anisotropic turbulence behaviour near a wall has to be used. This study presents the results of just such an attempt. In addition, two high Reynolds number closures assuming wall functions in the near-wall region are tested for their ability to replicate the behaviour of the normal stresses in a curved-pipe flow. These two closures differ in their modelling of the pressure-strain terms. Consequently, the effects of near-wall and pressure-strain modelling on curved-pipe flow calculations can be examined. Comparisons are also made with recent curved-pipe flow measurements. The results show that pressure-strain modelling alone is not sufficient to predict the rapid rise of the anisotropy of the normal stresses near the outer bend, and hence the formation of the secondary flow of the second kind. Overall, the near-wall Reynolds stress closure gives a more accurate prediction of the measured mean flow and turbulence statistics, and a realistic calculation of the secondary flow of the second kind near the outer bend.

1992 ◽  
Vol 13 (6) ◽  
pp. 405-413 ◽  
Author(s):  
P. -A. Chevrin ◽  
H. L. Petrie ◽  
S. Deutsch

2011 ◽  
Vol 687 ◽  
pp. 376-403 ◽  
Author(s):  
Seong Jae Jang ◽  
Hyung Jin Sung ◽  
Per-Åge Krogstad

AbstractThe flow in an axisymmetric contraction fitted to a fully developed pipe flow is experimentally and numerically studied. The reduction in turbulence intensity in the core region of the flow is discussed on the basis of the budgets for the various turbulent stresses as they develop downstream. The contraction generates a corresponding increase in energy in the near-wall region, where the sources for energy production are quite different and of opposite sign compared to the core region, where these effects are caused primarily by vortex stretching. The vortices in the pipe become aligned with the flow as the stretching develops through the contraction. Vortices which originally have a spanwise component in the pipe are stretched into pairs of counter-rotating vortices which become disconnected and aligned with the mean flow. The structures originating in the pipe which are inclined at an angle with respect to the wall are rotated towards the local mean streamlines. In the very near-wall region and the central part of the contraction the flow tends towards two-component turbulence, but these structures are different. The streamwise and azimuthal stresses are dominant in the near-wall region, while the lateral components dominate in the central part of the flow. The two regions are separated by a rather thin region where the flow is almost isotropic.


2016 ◽  
Vol 796 ◽  
pp. 257-284 ◽  
Author(s):  
Christian J. Kähler ◽  
Sven Scharnowski ◽  
Christian Cierpka

The understanding and accurate prediction of turbulent flow separation on smooth surfaces is still a challenging task because the separation and the reattachment locations are not fixed in space and time. Consequently, reliable experimental data are essential for the validation of numerical flow simulations and the characterization and analysis of the complex flow physics. However, the uncertainty of the existing near-wall flow measurements make a precise analysis of the near-wall flow features, such as separation/reattachment locations and other predicted near-wall flow features which are under debate, often impossible. Therefore, the periodic hill experiment at TU Munich (ERCOFTAC test case 81) was repeated using high resolution particle image velocimetry and particle tracking velocimetry. The results confirm the strong effect of the spatial resolution on the near-wall flow statistics. Furthermore, it is shown that statistically stable values of the turbulent flow variables can only be obtained for averaging times which are challenging to realize with highly resolved large eddy simulation and direct numerical simulation techniques. Additionally, the analysis implies that regions of correlated velocity fluctuations with rather uniform streamwise momentum exist in the flow. Their size in the mean flow direction can be larger than the hill spacing. The possible impact of the correlated turbulent motion on the wake region is discussed, as this interaction might be important for the understanding and control of the flow separation dynamics on smooth bodies.


2001 ◽  
Vol 124 (1) ◽  
pp. 86-99 ◽  
Author(s):  
G. A. Gerolymos ◽  
J. Neubauer ◽  
V. C. Sharma ◽  
I. Vallet

In this paper an assessment of the improvement in the prediction of complex turbomachinery flows using a new near-wall Reynolds-stress model is attempted. The turbulence closure used is a near-wall low-turbulence-Reynolds-number Reynolds-stress model, that is independent of the distance-from-the-wall and of the normal-to-the-wall direction. The model takes into account the Coriolis redistribution effect on the Reynolds-stresses. The five mean flow equations and the seven turbulence model equations are solved using an implicit coupled OΔx3 upwind-biased solver. Results are compared with experimental data for three turbomachinery configurations: the NTUA high subsonic annular cascade, the NASA_37 rotor, and the RWTH 1 1/2 stage turbine. A detailed analysis of the flowfield is given. It is seen that the new model that takes into account the Reynolds-stress anisotropy substantially improves the agreement with experimental data, particularily for flows with large separation, while being only 30 percent more expensive than the k−ε model (thanks to an efficient implicit implementation). It is believed that further work on advanced turbulence models will substantially enhance the predictive capability of complex turbulent flows in turbomachinery.


1996 ◽  
Vol 118 (1) ◽  
pp. 33-39 ◽  
Author(s):  
D. Sofialidis ◽  
P. Prinos

The effects of wall suction on the structure of fully developed pipe flow are studied numerically by solving the Reynolds averaged Navier-Stokes equations. Linear and nonlinear k-ε or k-ω low-Re models of turbulence are used for “closing” the system of the governing equations. Computed results are compared satisfactorily against experimental measurements. Analytical results, based on boundary layer assumptions and the mixing length concept, provide a law of the wall for pipe flow under the influence of low suction rates. The analytical solution is found in satisfactory agreement with computed and experimental data for a suction rate of A = 0.46 percent. For the much higher rate of A = 2.53 percent the above assumptions are not valid and analytical velocities do not follow the computed and experimental profiles, especially in the near-wall region. Near-wall velocities, as well as the boundary shear stress, are increased with increasing suction rates. The excess wall shear stress, resulting from suction, is found to be 1.5 to 5.5 times the respective one with no suction. The turbulence levels are reduced with the presence of the wall suction. Computed results of the turbulent shear stress uv are in close agreement with experimental measurements. The distribution of the turbulent kinetic energy k is predicted better by the k-ω model of Wilcox (1993). Nonlinear models of the k-ε and k-ω type predict the reduction of the turbulence intensities u’, v’, w’, and the correct levels of v’ and w’ but they underpredict the level of u’.


2014 ◽  
Vol 760 ◽  
pp. 304-312 ◽  
Author(s):  
Farid Karimpour ◽  
Subhas K. Venayagamoorthy

AbstractIn this study, we revisit the consequence of assuming equilibrium between the rates of production ($P$) and dissipation $({\it\epsilon})$ of the turbulent kinetic energy $(k)$ in the highly anisotropic and inhomogeneous near-wall region. Analytical and dimensional arguments are made to determine the relevant scales inherent in the turbulent viscosity (${\it\nu}_{t}$) formulation of the standard $k{-}{\it\epsilon}$ model, which is one of the most widely used turbulence closure schemes. This turbulent viscosity formulation is developed by assuming equilibrium and use of the turbulent kinetic energy $(k)$ to infer the relevant velocity scale. We show that such turbulent viscosity formulations are not suitable for modelling near-wall turbulence. Furthermore, we use the turbulent viscosity $({\it\nu}_{t})$ formulation suggested by Durbin (Theor. Comput. Fluid Dyn., vol. 3, 1991, pp. 1–13) to highlight the appropriate scales that correctly capture the characteristic scales and behaviour of $P/{\it\epsilon}$ in the near-wall region. We also show that the anisotropic Reynolds stress ($\overline{u^{\prime }v^{\prime }}$) is correlated with the wall-normal, isotropic Reynolds stress ($\overline{v^{\prime 2}}$) as $-\overline{u^{\prime }v^{\prime }}=c_{{\it\mu}}^{\prime }(ST_{L})(\overline{v^{\prime 2}})$, where $S$ is the mean shear rate, $T_{L}=k/{\it\epsilon}$ is the turbulence (decay) time scale and $c_{{\it\mu}}^{\prime }$ is a universal constant. ‘A priori’ tests are performed to assess the validity of the propositions using the direct numerical simulation (DNS) data of unstratified channel flow of Hoyas & Jiménez (Phys. Fluids, vol. 18, 2006, 011702). The comparisons with the data are excellent and confirm our findings.


1995 ◽  
Vol 286 ◽  
pp. 291-325 ◽  
Author(s):  
Knut H. Bech ◽  
Nils Tillmark ◽  
P. Henrik Alfredsson ◽  
Helge I. Andersson

The turbulent structure in plane Couette flow at low Reynolds numbers is studied using data obtained both from numerical simulation and physical experiments. It is shown that the near-wall turbulence structure is quite similar to what has earlier been found in plane Poiseuille flow; however, there are also some large differences especially regarding Reynolds stress production. The commonly held view that the maximum in Reynolds stress close to the wall in Poiseuille and boundary layer flows is due to the turbulence-generating events must be modified as plane Couette flow does not exhibit such a maximum, although the near-wall coherent structures are quite similar. For two-dimensional mean flow, turbulence production occurs only for the streamwise fluctuations, and the present study shows the importance of the pressure—strain redistribution in connection with the near-wall coherent events.


Author(s):  
Koji Utsunomiya ◽  
Suketsugu Nakanishi ◽  
Hideo Osaka

Turbulent pipe flow past a ring-type permeable manipulator was investigated by measuring the mean flow and turbulent flow fields. The permeable manipulator ring had a rectangular cross section and a height 0.14 times the pipe radius. The experiments were performed under four conditions of the open area ratio β of the permeable ring (β = 0.1, 0.2, 0.3 and 0.4) for Reynolds number of 6.2×104. The results indicate that as the open-area ratio increased, the separated shear layer arising from the permeable ring top became weaker and the pressure loss was reduced by increasing fluid flow through the permeable ring. When β was less than 0.2, the velocity gradient was steeper over the permeable ring and in the shear layer near the reattachment region. When β was greater than 0.3, the width of the shear layer showed a relatively large augmentation and the back pressure in the separating region increases. Further, the response of the turbulent flow field to the permeable ring was delayed compared with that of the mean velocity field, and these differences increased with β. The turbulence intensities and Reynolds shear stress profiles near the reattachment point increased near the wall region as β increased, while those peak values that were taken at the locus of the manipulator ring height decreased as β increased.


2019 ◽  
Vol 104 (4) ◽  
pp. 927-946
Author(s):  
J. M. Nouri ◽  
D. Guerrato ◽  
N. Stosic

Abstract Mean flow and turbulence characteristics have been measured within the male and female rotors close to the discharge port of a double screw compressor at different radial positions, two axial positions from the exit port, Hp, and two radial planes, αp. Cycle-resolved axial and tangential mean flow measurements and their corresponding turbulent velocity fluctuations were made over a time window of 1° using a laser Doppler velocimetry, LDV, system. Measurements were performed through two transparent windows near the inlet of the discharge port inside the male and female working chambers. The results revealed a highly complex 3-D flow within the male and female working chambers, in particular, near the discharge port with two distinct flow zones 1 and 2 before and after the opening of the port, respectively. The flow in zone 1 was controlled by the rotor motion while in zone 2 was greatly influenced by the discharge process. In zone 2, both components of mean velocities were subjected to a sudden increase in velocity forming strong axial and tangential jet flows due to rapid change in pressure across the port as the flow is exposed into the discharge port. It was found that the flow structures have been affected considerably by the position of the discharge port, radial planes and radial positions. Axial and tangential RMS velocity distributions within both rotors were found to be relatively high and less affected by the flow changes of zones 1 and 2 with almost uniform distribution. The measured magnitudes of axial and tangential RMS velocities suggest it would be reasonable to assume the local turbulence to be isotropic for the modelling purposes. To authors’ knowledge, the results are unique, original and in great details not only to describe the flow structure, but also, they can be used in CFD codes to establish a reliable model of the flow and pressure distribution within twin screw machines.


Author(s):  
Vincenzo Dossena ◽  
Antonio Perdichizzi ◽  
Marina Ubaldi ◽  
Pietro Zunino

An experimental investigation on a linear turbine cascade has been carried out to study the effects induced by incidence angle and pitch-chord ratio variations on the three-dimensional turbulent flow downstream of the cascade. Previous mean flow measurements have shown how these parameters influence the energy losses and the secondary velocity field. Now detailed hot wire measurements have been performed on a plane located at 22 per cent of an axial chord downstream of the trailing edge, in order to determine the distribution of all the six Reynolds stress tensor components, for three incidence conditions (i = −30, 0, +30 deg) and for three pitch-chord ratios (s/c = 0.58, 0.72, 0.87). Significant changes of the turbulent flow structure, interesting magnitude and distribution of the Reynolds stress components, have been observed for all the considered test conditions. The analysis of the results shows the correlation between the mean flow features and the turbulent quantities and the relationship between the energy loss production and the blade loading variation. The presented data are also suitable for assessing the behaviour of turbulence models in complex 3D flows, on design and off-design conditions.


Sign in / Sign up

Export Citation Format

Share Document