scholarly journals Potential bile acid metabolites. XV. Synthesis of 4.BETA.-hydroxylated bile acids; unique bile acids in human fetal bile.

1989 ◽  
Vol 37 (12) ◽  
pp. 3323-3329 ◽  
Author(s):  
Takashi IIDA ◽  
Toshiaki MOMOSE ◽  
Frederic C. CHANG ◽  
Junichi GOTO ◽  
Tosio NAMBARA
Steroids ◽  
1991 ◽  
Vol 56 (3) ◽  
pp. 114-122 ◽  
Author(s):  
Takashi Iida ◽  
Ichiro Komatsubara ◽  
Frederic C. Chang ◽  
Junichi Goto ◽  
Toshio Nambara

Author(s):  
Ioannis Evangelakos ◽  
Joerg Heeren ◽  
Esther Verkade ◽  
Folkert Kuipers

AbstractBile acids and their signaling pathways are increasingly recognized as potential therapeutic targets for cholestatic and metabolic liver diseases. This review summarizes new insights in bile acid physiology, focusing on regulatory roles of bile acids in the control of immune regulation and on effects of pharmacological modulators of bile acid signaling pathways in human liver disease. Recent mouse studies have highlighted the importance of the interactions between bile acids and gut microbiome. Interfering with microbiome composition may be beneficial for cholestatic and metabolic liver diseases by modulating formation of secondary bile acids, as different bile acid species have different signaling functions. Bile acid receptors such as FXR, VDR, and TGR5 are expressed in a variety of cells involved in innate as well as adaptive immunity, and specific microbial bile acid metabolites positively modulate immune responses of the host. Identification of Cyp2c70 as the enzyme responsible for the generation of hydrophilic mouse/rat-specific muricholic acids has allowed the generation of murine models with a human-like bile acid composition. These novel mouse models will aid to accelerate translational research on the (patho)physiological roles of bile acids in human liver diseases .


Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Saroj CHAKRABORTY ◽  
Anju Lulla ◽  
Xi Cheng ◽  
Cam McCarthy ◽  
Ji-Youn Yeo ◽  
...  

Hypertension is the single prominent risk factor of epidemic proportions leading to cardiovascular disease and stroke, which comprise the top two reasons for mortality of humans in the modern age. Much of the attention for the unknown causes of hypertension was focused on genetics and dietary salt, but in recent years, host-microbiotal interaction is gaining importance. Host-microbiotal partnership is key for the generation of many bioactive molecules including bile acid (BA) metabolites. Primary bile acids are synthesized and conjugated by the host but deconjugated and further modified to secondary BA by gut commensal bacteria. BA metabolites serve as important ligands for host nuclear receptors and/or G-protein-coupled receptors. These receptors have pivotal roles in blood pressure regulation. However, the effect of the host-microorganism biliary network on blood pressure (BP) remains poorly characterized. Here we report that both dietary salt and genetic factors rewire the composition of bile acids and BP. Specific reductions in conjugated bile acids were noted in human hypertensives as well as in rats with hypertension. Conjugation of bile acids by the host alone, devoid of the deconjugation step by microbiota, was sufficient to decrease BP of germ-free rats compared to germ-free conventionalized rats. Nutritional restoration of the conjugation of bile acids with Taurine increased the availability of circulating conjugated bile acids as ligands and ameliorated host susceptibility to hypertension via BA nuclear receptors and G-protein-coupled receptors. Thus, hosts and their bacterial symbionts can control host BP homeostasis via the resulting pool of bile acid metabolites. Sources of funding: National Institutes of Health (R01HL143082).


1995 ◽  
Vol 36 (3) ◽  
pp. 628-638
Author(s):  
T Iida ◽  
S Nishida ◽  
Y Yamaguchi ◽  
M Kodake ◽  
F C Chang ◽  
...  

Metabolites ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 612
Author(s):  
Shanalee C. James ◽  
Karl Fraser ◽  
Wayne Young ◽  
Phoebe E. Heenan ◽  
Richard B. Gearry ◽  
...  

Bile acids are metabolites involved in nutrient absorption and signaling with levels influenced by dietary intake, metabolic processes, and the gut microbiome. We aimed to quantify 23 bile acids in fecal samples to ascertain if concentrations differed between healthy participants and those with functional gut disorders. Fecal bile acids were measured using liquid chromatography-mass spectrometry (LC-MS) in the COMFORT (The Christchurch IBS cohort to investigate mechanisms for gut relief and improved transit) cohort of 250 participants with Rome IV IBS (IBS-constipation (C), IBS-diarrhea (D), IBS-mixed (M)), functional gut disorders (functional constipation (FC), functional diarrhea (FD)) and healthy controls (FC n = 35, FD n = 13, IBS-C n = 24, IBS-D n = 52, IBS-M n = 29, and control n = 97). Dietary information was recorded to ascertain three-day dietary intake before fecal samples were collected. Fecal bile acid concentrations, predominantly primary bile acids, were significantly different between all functional gut disorder participants and healthy controls (CDCA p = 0.011, CA p = 0.003) and between constipation (FC + IBS-C) and diarrhea (FD + IBS-D) groups (CDCA p = 0.001, CA p = 0.0002). Comparison of bile acids between all functional groups showed four metabolites were significantly different, although analysis of combined groups (FC + IBS-C vs. FD + IBS-D) showed that 10 metabolites were significantly different. The bile acid profiles of FD individuals were similar to those with IBS-D, and likewise, those with FC were similar to IBS-C. Individuals with a diarrhea phenotype (FD + IBS-D) had higher concentrations of bile acids compared to those with constipation (FC + IBS-C). Bile acid metabolites distinguish between individuals with functional gut disorders and healthy controls but are similar in constipation (or diarrhea) whether classified as IBS or not.


2018 ◽  
Author(s):  
Saiyu Hang ◽  
Donggi Paik ◽  
A. Sloan Devlin ◽  
Trinath Jamma ◽  
Jingping Lu ◽  
...  

AbstractBile acids are abundantly present in the mammalian gut, where they undergo bacteria-mediated transformation, generating a large pool of bioactive molecules. While they have been shown to affect host metabolism, cancer progression and innate immunity, it is unknown whether bile acids affect the function of adaptive immune cells such as T cells expressing IL-17a (Th17 cells) and regulatory T cells (Tregs) that mediate inflammatory and anti-inflammatory responses, respectively. By screening a small-molecule library primarily composed of bile acid metabolites, we identified two distinct derivatives of lithocholic acid (LCA), 3-oxoLCA and isoalloLCA, as specific regulators of Th17 and Treg cells. While 3-oxoLCA inhibited Th17 cell differentiation by directly binding to its key transcription factor RORγt (retinoid-related orphan receptor γ t), isoalloLCA enhanced differentiation of Tregs through mitochondrial-dependent metabolic changes, leading to an increased expression of Foxp3. IsoalloLCA-dependent Treg enhancement required an intronic Foxp3 enhancer, the conserved noncoding sequence 3 (CNS3), which acts as an epigenetic switch that confers a poised state to the Foxp3 promoter. Lastly, oral administration of 3-oxoLCA and isoalloLCA to mice led to reduced Th17 and increased Treg cell differentiation in the intestinal lamina propria. Altogether, our data suggest novel mechanisms by which bile acid metabolites control host immune responses by directly modulating the Th17 and Treg balance.


2019 ◽  
Vol 112 (5) ◽  
pp. 516-524 ◽  
Author(s):  
Tilman Kühn ◽  
Magdalena Stepien ◽  
Marina López-Nogueroles ◽  
Antje Damms-Machado ◽  
Disorn Sookthai ◽  
...  

Abstract Background Bile acids have been proposed to promote colon carcinogenesis. However, there are limited prospective data on circulating bile acid levels and colon cancer risk in humans. Methods Associations between prediagnostic plasma levels of 17 primary, secondary, and tertiary bile acid metabolites (conjugated and unconjugated) and colon cancer risk were evaluated in a nested case-control study within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Bile acid levels were quantified by tandem mass spectrometry in samples from 569 incident colon cancer cases and 569 matched controls. Multivariable logistic regression analyses were used to estimate odds ratios (ORs) for colon cancer risk across quartiles of bile acid concentrations. Results Positive associations were observed between colon cancer risk and plasma levels of seven conjugated bile acid metabolites: the primary bile acids glycocholic acid (ORquartile 4 vs quartile 1= 2.22, 95% confidence interval [CI] = 1.52 to 3.26), taurocholic acid (OR = 1.78, 95% CI = 1.23 to 2.58), glycochenodeoxycholic acid (OR = 1.68, 95% CI = 1.13 to 2.48), taurochenodeoxycholic acid (OR = 1.62, 95% CI = 1.11 to 2.36), and glycohyocholic acid (OR = 1.65, 95% CI = 1.13 to 2.40), and the secondary bile acids glycodeoxycholic acid (OR = 1.68, 95% CI = 1.12 to 2.54) and taurodeoxycholic acid (OR = 1.54, 95% CI = 1.02 to 2.31). By contrast, unconjugated bile acids and tertiary bile acids were not associated with risk. Conclusions This prospective study showed that prediagnostic levels of certain conjugated primary and secondary bile acids were positively associated with risk of colon cancer. Our findings support experimental data to suggest that a high bile acid load is colon cancer promotive.


2020 ◽  
Vol 16 ◽  
Author(s):  
Armin Mooranian ◽  
Nassim Zamani ◽  
Bozica Kovacevic ◽  
Corina Mihaela Ionescu ◽  
Giuseppe Luna ◽  
...  

Aim: Examine bile acids effects in Type 2 diabetes. Background: In recent studies, the bile acid ursodeoxycholic acid (UDCA) has shown potent anti-inflammatory effects in obese patients while in type 2 diabetics (T2D) levels of the pro-inflammatory bile acid lithocholic acid were increased, and levels of the anti-inflammatory bile acid chenodeoxycholic acid were decreased, in plasma. Objective: Hence, this study aimed to examine applications of novel UDCA nanoparticles in diabetes. Methods: Diabetic balb/c adult mice were divided into three equal groups and gavaged daily with either empty microcapsules, free UDCA, or microencapsulated UDCA over two weeks. Their blood, tissues, urine, and faeces were collected for blood glucose, inflammation, and bile acid analyses. UDCA resulted in modulatory effects on bile acids profile without antidiabetic effects suggesting that bile acid modulation was not directly linked to diabetes treatment. Results: UDCA resulted in modulatory effects on bile acids profile without antidiabetic effects suggesting that bile acid modulation was not directly linked to diabetes treatment. Conclusion: Bile acids modulated the bile profile without affecting blood glucose levels.


2021 ◽  
Vol 12 (2) ◽  
pp. 335-353
Author(s):  
Evette B. M. Hillman ◽  
Sjoerd Rijpkema ◽  
Danielle Carson ◽  
Ramesh P. Arasaradnam ◽  
Elizabeth M. H. Wellington ◽  
...  

Bile acid diarrhoea (BAD) is a widespread gastrointestinal disease that is often misdiagnosed as irritable bowel syndrome and is estimated to affect 1% of the United Kingdom (UK) population alone. BAD is associated with excessive bile acid synthesis secondary to a gastrointestinal or idiopathic disorder (also known as primary BAD). Current licensed treatment in the UK has undesirable effects and has been the same since BAD was first discovered in the 1960s. Bacteria are essential in transforming primary bile acids into secondary bile acids. The profile of an individual’s bile acid pool is central in bile acid homeostasis as bile acids regulate their own synthesis. Therefore, microbiome dysbiosis incurred through changes in diet, stress levels and the introduction of antibiotics may contribute to or be the cause of primary BAD. This literature review focuses on primary BAD, providing an overview of bile acid metabolism, the role of the human gut microbiome in BAD and the potential options for therapeutic intervention in primary BAD through manipulation of the microbiome.


Sign in / Sign up

Export Citation Format

Share Document