scholarly journals Establishment Size Dynamics in the Aggregate Economy

2007 ◽  
Vol 97 (5) ◽  
pp. 1639-1666 ◽  
Author(s):  
Esteban Rossi-Hansberg ◽  
Mark L. J Wright

This paper presents a theory of establishment size dynamics based on the accumulation of industry-specific human capital that simultaneously rationalizes the economy-wide facts on establishment growth rates, exit rates, and size distributions. The theory predicts that establishment growth and net exit rates should decline faster with size, and that the establishment size distribution should have thinner tails, in sectors that use specific human capital less intensively. We establish that there is substantial cross-sector heterogeneity in US establishment size dynamics and distributions, which is well explained by relative factor intensities. (JEL L11, L16, L25).

2021 ◽  
Vol 14 (3) ◽  
pp. 1821-1839
Author(s):  
Dana L. McGuffin ◽  
Yuanlong Huang ◽  
Richard C. Flagan ◽  
Tuukka Petäjä ◽  
B. Erik Ydstie ◽  
...  

Abstract. Atmospheric aerosol microphysical processes are a significant source of uncertainty in predicting climate change. Specifically, aerosol nucleation, emissions, and growth rates, which are simulated in chemical transport models to predict the particle size distribution, are not understood well. However, long-term size distribution measurements made at several ground-based sites across Europe implicitly contain information about the processes that created those size distributions. This work aims to extract that information by developing and applying an inverse technique to constrain aerosol emissions as well as nucleation and growth rates based on hourly size distribution measurements. We developed an inverse method based upon process control theory into an online estimation technique to scale aerosol nucleation, emissions, and growth so that the model–measurement bias in three measured aerosol properties exponentially decays. The properties, which are calculated from the measured and predicted size distributions, used to constrain aerosol nucleation, emission, and growth rates are the number of particles with a diameter between 3 and 6 nm, the number with a diameter greater than 10 nm, and the total dry volume of aerosol (N3–6, N10, Vdry), respectively. In this paper, we focus on developing and applying the estimation methodology in a zero-dimensional “box” model as a proof of concept before applying it to a three-dimensional simulation in subsequent work. The methodology is first tested on a dataset of synthetic and perfect measurements that span diverse environments in which the true particle emissions, growth, and nucleation rates are known. The inverse technique accurately estimates the aerosol microphysical process rates with an average and maximum error of 2 % and 13 %, respectively. Next, we investigate the effect that measurement noise has on the estimated rates. The method is robust to typical instrument noise in the aerosol properties as there is a negligible increase in the bias of the estimated process rates. Finally, the methodology is applied to long-term datasets of in situ size distribution measurements in western Europe from May 2006 through June 2007. At Melpitz, Germany, and Hyytiälä, Finland, the average diurnal profiles of estimated 3 nm particle formation rates are reasonable, having peaks near noon local time with average peak values of 1 and 0.15 cm−3 s−1, respectively. The normalized absolute error in estimated N3–6, N10, and Vdry at three European measurement sites is less than 15 %, showing that the estimation framework developed here has potential to decrease model–measurement bias while constraining uncertain aerosol microphysical processes.


2020 ◽  
Author(s):  
Dana L. McGuffin ◽  
Yuanlong Huang ◽  
Richard C. Flagan ◽  
Tuukka Petäjä ◽  
B. Erik Ydstie ◽  
...  

Abstract. Atmospheric aerosol microphysical processes are a significant source of uncertainty in predicting climate change. Specifically, aerosol nucleation, emissions, and growth rates, which are simulated in chemical transport models to predict the particle size distribution, are not understood well. However, long-term size distribution measurements made at several ground-based sites across Europe implicitly contain information about the processes that created those size distributions. This work aims to extract that information by developing and applying an inverse technique to constrain aerosol emissions as well as nucleation and growth rates based on hourly size distribution measurements. We developed an inverse method based upon process control theory into an online estimation technique to scale aerosol emissions, growth, and nucleation so that the model-measurement bias in three measured aerosol properties exponentially decays. The properties, which are calculated from the measured and predicted size distributions, used to constrain aerosol nucleation, emission, and growth rates are the number of particles with diameter between 3 nm and 6 nm, the number with diameter greater than 10 nm, and the total dry volume of aerosol (N3-6, N10, Vdry), respectively. In this paper, we focus on developing and applying the estimation methodology in a zero-dimensional "box" model as a proof-of-concept before applying it to a three-dimensional simulation in subsequent work. The methodology is first tested on a dataset of synthetic and perfect measurements that span diverse environments in which the true particle emissions, growth, and nucleation rates are known. The inverse technique accurately estimates the aerosol microphysical process rates with an average and maximum error of 2 % and 13 %, respectively. Next, we investigate the effect that measurement noise has on the estimated rates. The method is robust to typical instrument noise in the aerosol properties as there is a negligible increase in bias of the estimated process rates. Finally, the methodology is applied to long-term datasets of in-situ size distribution measurements in Western Europe from May 2006 through June 2007. At Melpitz, Germany and Hyytiälä, Finland, the average diurnal profiles of estimated 3 nm particle formation rates are reasonable, having peaks near noon local time with average peak values of 1 and 0.15 cm−3 s−1, respectively. The normalized absolute error in estimated N3-6, N10, and Vdry at three European measurement sites is less than 15 %, showing that the estimation framework developed here has potential to decrease model-measurement bias while constraining uncertain aerosol microphysical processes.


2008 ◽  
pp. 94-109 ◽  
Author(s):  
D. Sorokin

The problem of the Russian economy’s growth rates is considered in the article in the context of Russia’s backwardness regarding GDP per capita in comparison with the developed countries. The author stresses the urgency of modernization of the real sector of the economy and the recovery of the country’s human capital. For reaching these goals short- or mid-term programs are not sufficient. Economic policy needs a long-term (15-20 years) strategy, otherwise Russia will be condemned to economic inertia and multiplying structural disproportions.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 890
Author(s):  
Jakub Bartak ◽  
Łukasz Jabłoński ◽  
Agnieszka Jastrzębska

In this paper, we study economic growth and its volatility from an episodic perspective. We first demonstrate the ability of the genetic algorithm to detect shifts in the volatility and levels of a given time series. Having shown that it works well, we then use it to detect structural breaks that segment the GDP per capita time series into episodes characterized by different means and volatility of growth rates. We further investigate whether a volatile economy is likely to grow more slowly and analyze the determinants of high/low growth with high/low volatility patterns. The main results indicate a negative relationship between volatility and growth. Moreover, the results suggest that international trade simultaneously promotes growth and increases volatility, human capital promotes growth and stability, and financial development reduces volatility and negatively correlates with growth.


Author(s):  
Mo Ji ◽  
Martin Strangwood ◽  
Claire Davis

AbstractThe effects of Nb addition on the recrystallization kinetics and the recrystallized grain size distribution after cold deformation were investigated by using Fe-30Ni and Fe-30Ni-0.044 wt pct Nb steel with comparable starting grain size distributions. The samples were deformed to 0.3 strain at room temperature followed by annealing at 950 °C to 850 °C for various times; the microstructural evolution and the grain size distribution of non- and fully recrystallized samples were characterized, along with the strain-induced precipitates (SIPs) and their size and volume fraction evolution. It was found that Nb addition has little effect on recrystallized grain size distribution, whereas Nb precipitation kinetics (SIP size and number density) affects the recrystallization Avrami exponent depending on the annealing temperature. Faster precipitation coarsening rates at high temperature (950 °C to 900 °C) led to slower recrystallization kinetics but no change on Avrami exponent, despite precipitation occurring before recrystallization. Whereas a slower precipitation coarsening rate at 850 °C gave fine-sized strain-induced precipitates that were effective in reducing the recrystallization Avrami exponent after 50 pct of recrystallization. Both solute drag and precipitation pinning effects have been added onto the JMAK model to account the effect of Nb content on recrystallization Avrami exponent for samples with large grain size distributions.


2004 ◽  
Vol 4 (5) ◽  
pp. 1255-1263 ◽  
Author(s):  
B. Mayer ◽  
M. Schröder ◽  
R. Preusker ◽  
L. Schüller

Abstract. Cloud single scattering properties are mainly determined by the effective radius of the droplet size distribution. There are only few exceptions where the shape of the size distribution affects the optical properties, in particular the rainbow and the glory directions of the scattering phase function. Using observations by the Compact Airborne Spectrographic Imager (CASI) in 180° backscatter geometry, we found that high angular resolution aircraft observations of the glory provide unique new information which is not available from traditional remote sensing techniques: Using only one single wavelength, 753nm, we were able to determine not only optical thickness and effective radius, but also the width of the size distribution at cloud top. Applying this novel technique to the ACE-2 CLOUDYCOLUMN experiment, we found that the size distributions were much narrower than usually assumed in radiation calculations which is in agreement with in-situ observations during this campaign. While the shape of the size distribution has only little relevance for the radiative properties of clouds, it is extremely important for understanding their formation and evolution.


Author(s):  
Tobias Maier

AbstractThe change of tasks in occupations is of interest to economic and sociological research from three perspectives. The task-based technological change approach describes tasks as the link between capital input and labor demand. In human capital theory, tasks are used to distinguish between general and specific human capital. Moreover, in institutional economics or sociology, it is argued that the specificity of occupations influences the marketability of the corresponding skills and tasks. However, data sources that illustrate task change within occupations are rare. The objective of this paper is therefore to introduce a task panel, which is created based on 16 cross-sectional surveys from between 1973 and 2011 of the German microcensus (Labor-Force-Survey), as an additional source to monitor task change. I present and discuss the harmonization method for eleven main activities that are exercised by the incumbents of the occupation within 176 occupational groups. To demonstrate the research potential of this novel data source, I develop an alternative theoretical view on the task-technology framework and classify the harmonized tasks according to their relationship to technological inventions in the third industrial (micro-electronic) revolution (technologically replaceable, technology-accompanying, technology-complementary and technologically neutral). Matching the task panel to an already existing Occupational Panel (OccPan) for Western Germany from 1976 to 2010, I can use fixed-effect regressions to show that changes of tasks within occupations correspond with theoretical expectations regarding the median wage growth of an occupation. The task panel can be matched to any data set containing a German classification of occupations from 1975, 1988 or 1992 to investigate further effects of task change on individual labor market success.


1991 ◽  
Vol 113 (4) ◽  
pp. 402-411 ◽  
Author(s):  
T. J. Labus ◽  
K. F. Neusen ◽  
D. G. Alberts ◽  
T. J. Gores

A basic investigation of the factors which influence the abrasive jet mixing process was conducted. Particle size analysis was performed on abrasive samples for the “as-received” condition, at the exit of the mixing tube, and after cutting a target material. Grit size distributions were obtained through sieve analysis for both water and air collectors. Two different mixing chamber geometries were evaluated, as well as the effects of pressure, abrasive feed rate, cutting speed, and target material properties on particle size distributions. An analysis of the particle size distribution shows that the main particle breakdown is from 180 microns directly to 63 microns or less, for a nominal 80 grit garnet. This selective breakdown occurs during the cutting process, but not during the mixing process.


2005 ◽  
Vol 44 (7) ◽  
pp. 1146-1151 ◽  
Author(s):  
Axel Seifert

Abstract The relation between the slope and shape parameters of the raindrop size distribution parameterized by a gamma distribution is examined. The comparison of results of a simple rain shaft model with an empirical relation based on disdrometer measurements at the surface shows very good agreement, but a more detailed discussion reveals some difficulties—for example, deviations from the gamma shape and the overestimation of collisional breakup.


Sign in / Sign up

Export Citation Format

Share Document