Numerical Studies of Deep Concrete Coupling Beams Retrofitted with a Laterally Restrained Steel Plate

2011 ◽  
Vol 14 (5) ◽  
pp. 903-915 ◽  
Author(s):  
B. Cheng ◽  
R.K.L. Su
2014 ◽  
Vol 638-640 ◽  
pp. 283-286
Author(s):  
Li Song ◽  
Dong Chen ◽  
Bao Lei Li

The coupling beam work as an important component in coupled shear walls, the strength,stiffness and deformation properties of which have great influence on the seismic performance of shear walls, the steel plate reinforced concrete coupling beams have the advantages as follows: simplify the constructional details, make the construction convenient and reliable performance [1][2]. The numerical simulation model in this paper is a coupled shear wall connected by steel plate reinforced concrete coupling beams in reference [3], and the loading mode is the same as the reference [4] . The relative stiffness effect was explored by study the internal force and displacement of the model with changing the stiffness of the coupling beams and the shear walls while the span-depth ratio is stable .The study will provide a reference for the numerical simulation of the finite element simulation analysis of the coupling beams and the steel reinforced concrete structures.


2014 ◽  
Vol 1065-1069 ◽  
pp. 1139-1142
Author(s):  
Bao Lei Li ◽  
Dong Chen ◽  
Cheng Fan ◽  
Li Song

In this paper, on the basis of specimen model size mentioned in steel reinforced concrete coupling beam stress performance research, using the ANSYS finite element software about coupling beam specimens with different steel plates for one-off monotonic loading. Through the comparative analysis of simulation results, to explore the impact of different steel plate forms on shear capacity and ductility of coupling beams, etc .


2014 ◽  
Vol 92 ◽  
pp. 150-163 ◽  
Author(s):  
Hong-Song Hu ◽  
Jianguo Nie ◽  
Matthew R. Eatherton

2014 ◽  
Vol 62 (1) ◽  
pp. 151-163 ◽  
Author(s):  
W. Barnat

Abstract This paper presents experimental and numerical studies on influence of an incidence angle of the shock wave on a steel plate. The problem of interaction between the wave front and a barrier is important from the point of view of protection the crew of armored vehicles. One way of remedying the harmful effects of impacts of the shock wave is the reflection wave of the barrier set at an angle to the face of the wave. The article presents the numerical and experimental approach to the subject. The numerical part presents four models in which the plate was set at angles 0◦, 15◦, 30◦, 45◦. In each case, the plate was loaded by a wave formed after the explosion 2 kg of TNT. In the experimental part the results are presented from an experiment in which the wave was formed from 2 kg TNT detonation at a distance of 0.4 m in parallel to the steel plate.


2016 ◽  
Vol 118 ◽  
pp. 76-90 ◽  
Author(s):  
Hong-Song Hu ◽  
Jian-Guo Nie ◽  
Yu-Hang Wang

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
W. Y. Lam ◽  
Lingzhi Li ◽  
R. K. L. Su ◽  
H. J. Pam

As a new alternative design, plate-reinforced composite (PRC) coupling beam achieves enhanced strength and ductility by embedding a vertical steel plate into a conventionally reinforced concrete (RC) coupling beam. Based on a nonlinear finite element model developed in the authors’ previous study, a parametric study presented in this paper has been carried out to investigate the influence of several key parameters on the overall performance of PRC coupling beams. The effects of steel plate geometry, span-to-depth ratio of beams, and steel reinforcement ratios at beam spans and in wall regions are quantified. It is found that the anchorage length of the steel plate is primarily controlled by the span-to-depth ratio of the beam. Based on the numerical results, a design curve is proposed for determining the anchorage length of the steel plate. The load-carrying capacity of short PRC coupling beams with high steel ratio is found to be controlled by the steel ratio of wall piers. The maximum shear stress of PRC coupling beams should be limited to 15 MPa.


2014 ◽  
Vol 94 ◽  
pp. 49-63 ◽  
Author(s):  
Jian-Guo Nie ◽  
Hong-Song Hu ◽  
Matthew R. Eatherton

2018 ◽  
Vol 763 ◽  
pp. 18-31 ◽  
Author(s):  
Guo Qiang Li ◽  
Hua Jian Jin ◽  
Meng De Pang ◽  
Yan Wen Li ◽  
Ying Zhi Sun ◽  
...  

Buildings in seismic zones are required to provide proper stiffness and load-bearing capacity to resist frequent earthquakes, and possess proper ductility and energy-dissipating capacity to prevent collapse under rare earthquakes. To meet these requirements, the concept of structural energy-dissipation techniques for the bi-functions of load-bearing and energy dissipating are proposed. A number of structural metal energy-dissipation elements, such as buckling-restrained steel plate shear walls, non-buckling corrugated steel plate shear walls, two-level yielding steel coupling beams and energy-dissipative columns, have been developed. They are designed to provide stiffness/strength to guarantee the operation of buildings under frequent earthquakes, but also dissipate energy to reduce seismic effects to a considerable extent for collapse-prevention of buildings. The experimental and theoretical studies on these structural metal energy-dissipating dampers are presented. The efficiency of these structural dampers for disaster mitigation of buildings against earthquakes are also presented to provide a reference for their practical application.


Sign in / Sign up

Export Citation Format

Share Document