Structural Response and Energy Absorption of Sandwich Panels with an Aluminium Foam Core under Blast Loading

2008 ◽  
Vol 11 (5) ◽  
pp. 525-536 ◽  
Author(s):  
Feng Zhu ◽  
Longmao Zhao ◽  
Guoxing Lu ◽  
Zhihua Wang

This paper first presents an experimental investigation into the response of square sandwich panels with an aluminium foam core under blast loading, followed by a corresponding FE simulation using LS-DYNA. In the simulation, the loading process of explosive and response of the sandwich panels have been investigated. The blast loading process includes both the explosion procedure of the charge and interaction with the panel. The simulation result shows that the deformation/failure patterns observed in the tests are well captured by the numerical model, and quantitatively a reasonable agreement has been obtained between the simulation and experiment. Finally, a parametric study has been carried out to investigate the energy absorption performance of sandwich panels.

2016 ◽  
Vol 852 ◽  
pp. 66-71 ◽  
Author(s):  
M. Nalla Mohamed ◽  
D. Ananthapadmanaban ◽  
M. Selvaraj

Sandwich structures based on Fibre Reinforced Polymer (FRP) facesheet skins bonded with low density aluminium foam core are increasing in use in aerospace and marine industries. These structures are very sensitive to high velocity impact during the service. Therefore, it is necessary to study the energy absorption of the structures to ensure the reliability and safety in use. Experimental investigation of these transient events is expensive and time-consuming, and nowadays the use of numerical approaches is on the increase. Hence, the purpose of this paper is to develop a numerical model of sandwich panels with aluminium foam as a core and Glass, Carbon and Kevlar Fibre Reinforced polymer composite as faceplate, subjected to high velocity impact using ABAQUS/Explicit. The influence of individual elements of the sandwich panel on the energy absorption of the structures subjected to high velocity impact loading was analysed. Selection of suitable constitutive models and erosion criterion for the damage were discussed. The numerical models were validated with experimental data obtained from the scientific literature. Good agreement was obtained between the simulations and the experimental results. The contribution of the face sheet, foam core on the impact behaviour was evaluated by the analysis of the residual velocity, ballistic limit, and damaged area.


2017 ◽  
Vol 21 (3) ◽  
pp. 838-864 ◽  
Author(s):  
Yuansheng Cheng ◽  
Tianyu Zhou ◽  
Hao Wang ◽  
Yong Li ◽  
Jun Liu ◽  
...  

The ANSYS/Autodyn software was employed to investigate the dynamic responses of foam-filled corrugated core sandwich panels under air blast loading. The panels were assembled from metallic face sheets and corrugated webs, and PVC foam inserts with different filling strategies. To calibrate the proposed numerical model, the simulation results were compared with experimental data reported previously. The response of the panels was also compared with that of the empty (unfilled) sandwich panels. Numerical results show that the fluid–structure interaction effect was dominated by front face regardless of the foam fillers. Foam filling would reduce the level of deformation/failure of front face, but did not always decrease the one of back face. It is found that the blast performance in terms of the plastic deflections of the face sheets can be sorted as the following sequence: fully filled hybrid panel, front side filled hybrid panel, back side filled hybrid panel, and the empty sandwich panel. Investigation into energy absorption characteristic revealed that the front face and core web provided the most contribution on total energy absorption. A reverse order of panels was obtained when the maximization of total energy dissipation was used as the criteria of blast performance.


2015 ◽  
Vol 32 (13) ◽  
pp. 1330-1337 ◽  
Author(s):  
A. Babakhani ◽  
M. Golestanipour ◽  
S. M. Zebarjad

2017 ◽  
Vol 21 (2) ◽  
pp. 464-482 ◽  
Author(s):  
Lin Jing ◽  
Longmao Zhao

The dynamic response, blast resistance and energy absorption capability of clamped square sandwich panels comparing two aluminum alloy face-sheets and a layered gradient metallic foam core, subjected to air-blast loading, were studied numerically in this paper. Graded sandwich specimens with six different core-layer arrangements and three different face-sheet thickness arrangements were examined, respectively, compared to those ungraded sandwich panels with an equivalent nominally mass. Simulation results show that the blast resistance and energy absorption capability of sandwich panels with layered gradient metallic foam cores could be improved by optimizing the arrangements of different density metallic foam core-layers, and the graded sandwich panel with low-middle-high density core configuration has the best blast resistance capability. The blast resistance of graded sandwich panels with different thickness arrangements for top and bottom face-sheets has no obvious change tendency, since the normal stress distributions of their sandwich cross sections are controlled simultaneously by face-sheets and gradient foam core.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 1733-1738 ◽  
Author(s):  
KAVEH R. KABIR ◽  
TANIA VODENITCHAROVA ◽  
MARK HOFFMAN

The present study focuses on the structural response of sandwich panels consisting of a commercial closed-cell foam core and thin aluminium sheet skins under static three-point bending loading. Panels of different thicknesses and span lengths were tested, and the influence of the foam density, core thickness and skin type on the response was revealed. The failure modes in bending were greatly dependent on the span length but independent on the foam thickness. For short spans, the deformed shape at failure was asymmetric, as opposed to a symmetric mode for long spans. The density and thickness of the foam core, the presence of reinforcing face sheets and the beam span determined the failure load and bending strength of the sandwich panels.


2011 ◽  
Vol 11 (04) ◽  
pp. 697-716 ◽  
Author(s):  
CODY H. NGUYEN ◽  
RAMANJANEYA R. BUTUKURI ◽  
K. CHANDRASHEKHARA ◽  
VICTOR BIRMAN

Sandwich panels have been developed to either produce lighter structures capable of carrying prescribed loads or increase the load-carrying capacity subject to limitations on weight. In these panels, facings carry bending and in-plane loads while the core functions similarly to the web of a beam, mostly resisting transverse shear. Improvements in the load-carrying capacity of sandwich panels can be achieved through modifications in their geometry, boundary conditions, and material distribution. One of the methods recently considered by the authors is based on using facings with a step-wise variable thickness that increases at the critical region of the structure.1 It was illustrated that the strength of a sandwich panel can be considerably enhanced using such stepped facings, without a detrimental increase of the weight. The present paper expands the study of the feasibility of the stepped-facing sandwich panel concept concentrating on three structural problems, i.e. a possible improvement in stability, changes in the natural frequencies, and forced dynamic response to the explosive blast. It is illustrated that the stepped-facing design can improve stability of the panel and its response to blast loading. However, fundamental frequencies of stepped-facing panels decrease compared to those in their conventional equal-weight counterparts. Such decrease is detrimental in the majority of engineering applications representing a limitation of stepped-facing panels. Nevertheless, the usefulness of the stepped-facing design is proven in the problems of bending, stability, and blast loading. Numerous examples presented in the paper validate our suggestion that the combination of a relatively simple manufacturing process and an improved structural response of sandwich panels with stepped facings may present the designer with an attractive alternative to conventional sandwich structures.


Sign in / Sign up

Export Citation Format

Share Document