scholarly journals The floods in Greece: the case of Mandra in Attica

2018 ◽  
Vol 52 (1) ◽  
pp. 131 ◽  
Author(s):  
Georgios Soulios ◽  
Georgios Stournaras ◽  
Konstantinos Nikas ◽  
Christos Mattas

Floods are one of the most common natural disasters and are extremely dangerous in a global range since they can cause extensive damage to properties or losses in human lives. According to the opinion of many expert scientists, climate change has led to the increase of flooding phenomena over the last years worldwide, as well as in Greece. The aim of this paper is to examine the flooding event that occurred in Mandra area, Attica (Greece) on 14-15 November of 2017. The peak discharge of the Agia Ekaterini and Soures streams was calculated using the rational method (Giandotti) for return periods equal to 10, 100 and 1000 years. The stream characteristics were studied and their behavior during the flood was investigated. Many of the impacts were attributed to the human intervention in the streambeds.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hector Lobeto ◽  
Melisa Menendez ◽  
Iñigo J. Losada

AbstractExtreme waves will undergo changes in the future when exposed to different climate change scenarios. These changes are evaluated through the analysis of significant wave height (Hs) return values and are also compared with annual mean Hs projections. Hourly time series are analyzed through a seven-member ensemble of wave climate simulations and changes are estimated in Hs for return periods from 5 to 100 years by the end of the century under RCP4.5 and RCP8.5 scenarios. Despite the underlying uncertainty that characterizes extremes, we obtain robust changes in extreme Hs over more than approximately 25% of the ocean surface. The results obtained conclude that increases cover wider areas and are larger in magnitude than decreases for higher return periods. The Southern Ocean is the region where the most robust increase in extreme Hs is projected, showing local increases of over 2 m regardless the analyzed return period under RCP8.5 scenario. On the contrary, the tropical north Pacific shows the most robust decrease in extreme Hs, with local decreases of over 1.5 m. Relevant divergences are found in several ocean regions between the projected behavior of mean and extreme wave conditions. For example, an increase in Hs return values and a decrease in annual mean Hs is found in the SE Indian, NW Atlantic and NE Pacific. Therefore, an extrapolation of the expected change in mean wave conditions to extremes in regions presenting such divergences should be adopted with caution, since it may lead to misinterpretation when used for the design of marine structures or in the evaluation of coastal flooding and erosion.


2021 ◽  
Vol 9 (6) ◽  
pp. 595
Author(s):  
Américo Soares Ribeiro ◽  
Carina Lurdes Lopes ◽  
Magda Catarina Sousa ◽  
Moncho Gomez-Gesteira ◽  
João Miguel Dias

Ports constitute a significant influence in the economic activity in coastal areas through operations and infrastructures to facilitate land and maritime transport of cargo. Ports are located in a multi-dimensional environment facing ocean and river hazards. Higher warming scenarios indicate Europe’s ports will be exposed to higher risk due to the increase in extreme sea levels (ESL), a combination of the mean sea level, tide, and storm surge. Located on the west Iberia Peninsula, the Aveiro Port is located in a coastal lagoon exposed to ocean and river flows, contributing to higher flood risk. This study aims to assess the flood extent for Aveiro Port for historical (1979–2005), near future (2026–2045), and far future (2081–2099) periods scenarios considering different return periods (10, 25, and 100-year) for the flood drivers, through numerical simulations of the ESL, wave regime, and riverine flows simultaneously. Spatial maps considering the flood extent and calculated area show that most of the port infrastructures' resilience to flooding is found under the historical period, with some marginal floods. Under climate change impacts, the port flood extent gradually increases for higher return periods, where most of the terminals are at high risk of being flooded for the far-future period, whose contribution is primarily due to mean sea-level rise and storm surges.


Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1385
Author(s):  
Irais Mora-Ochomogo ◽  
Marco Serrato ◽  
Jaime Mora-Vargas ◽  
Raha Akhavan-Tabatabaei

Natural disasters represent a latent threat for every country in the world. Due to climate change and other factors, statistics show that they continue to be on the rise. This situation presents a challenge for the communities and the humanitarian organizations to be better prepared and react faster to natural disasters. In some countries, in-kind donations represent a high percentage of the supply for the operations, which presents additional challenges. This research proposes a Markov Decision Process (MDP) model to resemble operations in collection centers, where in-kind donations are received, sorted, packed, and sent to the affected areas. The decision addressed is when to send a shipment considering the uncertainty of the donations’ supply and the demand, as well as the logistics costs and the penalty of unsatisfied demand. As a result of the MDP a Monotone Optimal Non-Decreasing Policy (MONDP) is proposed, which provides valuable insights for decision-makers within this field. Moreover, the necessary conditions to prove the existence of such MONDP are presented.


Author(s):  
Mariya Bezgrebelna ◽  
Kwame McKenzie ◽  
Samantha Wells ◽  
Arun Ravindran ◽  
Michael Kral ◽  
...  

This systematic review of reviews was conducted to examine housing precarity and homelessness in relation to climate change and weather extremes internationally. In a thematic analysis of 15 reviews (5 systematic and 10 non-systematic), the following themes emerged: risk factors for homelessness/housing precarity, temperature extremes, health concerns, structural factors, natural disasters, and housing. First, an increased risk of homelessness has been found for people who are vulnerably housed and populations in lower socio-economic positions due to energy insecurity and climate change-induced natural hazards. Second, homeless/vulnerably-housed populations are disproportionately exposed to climatic events (temperature extremes and natural disasters). Third, the physical and mental health of homeless/vulnerably-housed populations is projected to be impacted by weather extremes and climate change. Fourth, while green infrastructure may have positive effects for homeless/vulnerably-housed populations, housing remains a major concern in urban environments. Finally, structural changes must be implemented. Recommendations for addressing the impact of climate change on homelessness and housing precarity were generated, including interventions focusing on homelessness/housing precarity and reducing the effects of weather extremes, improved housing and urban planning, and further research on homelessness/housing precarity and climate change. To further enhance the impact of these initiatives, we suggest employing the Human Rights-Based Approach (HRBA).


Author(s):  
Mali‘o Kodis ◽  
Marci Bortman ◽  
Sarah Newkirk

AbstractAs climate change accelerates the frequency and intensity of natural disasters, damage to public and private property is also increasing, putting exorbitant strain on governments and communities. Societies across the world are working to adapt to climate change, but climate adaptation is currently inadequate to meet the needs of the people left increasingly vulnerable and the places that risk being irreversibly changed or destroyed. One tactic of climate adaptation is strategic retreat, sometimes referred to as managed retreat. Strategic retreat is the process by which the government or another entity purchases (buys out) developed properties that are at risk of destruction or have been destroyed by natural disasters. The structure is most often demolished, and the land is placed under a permanent easement to prevent future development. What happens next is dependent on the entities involved in the buyouts, and can range from derelict, vacant lots to full restoration of ecosystems and their abilities to mitigate flood damage. Sometimes recreational amenities, such as trails or park infrastructure, are prioritized and funded as well. Conservation organizations can leverage their expertise in conservation planning, land acquisition and restoration, policy advocacy, and partnership development to improve the implementation of strategic retreat so that nature and people can thrive in the long term. In this policy paper, we review ways that conservation organizations have and can continue to engage in buyout processes to ensure positive outcomes for communities and nature. Conservation organizations must also evolve their approaches to climate adaptation to integrate equity and redress historical injustices in land use, and contribute towards improving strategic retreat for a more just and resilient future across disaster-prone communities. This work focuses on the context of disasters and climate adaptation in the USA, though many of the principles presented are applicable around the world.


2021 ◽  
Author(s):  
luis Augusto sanabria ◽  
Xuerong Qin ◽  
Jin Li ◽  
Robert Peter Cechet

Abstract Most climatic models show that climate change affects natural perils' frequency and severity. Quantifying the impact of future climate conditions on natural hazard is essential for mitigation and adaptation planning. One crucial factor to consider when using climate simulations projections is the inherent systematic differences (bias) of the modelled data compared with observations. This bias can originate from the modelling process, the techniques used for downscaling of results, and the ensembles' intrinsic variability. Analysis of climate simulations has shown that the biases associated with these data types can be significant. Hence, it is often necessary to correct the bias before the data can be reliably used for further analysis. Natural perils are often associated with extreme climatic conditions. Analysing trends in the tail end of distributions are already complicated because noise is much more prominent than that in the mean climate. The bias of the simulations can introduce significant errors in practical applications. In this paper, we present a methodology for bias correction of climate simulated data. The technique corrects the bias in both the body and the tail of the distribution (extreme values). As an illustration, maps of the 50 and 100-year Return Period of climate simulated Forest Fire Danger Index (FFDI) in Australia are presented and compared against the corresponding observation-based maps. The results show that the algorithm can substantially improve the calculation of simulation-based Return Periods. Forthcoming work will focus on the impact of climate change on these Return Periods considering future climate conditions.


Author(s):  
Boris Ivanovskiy ◽  

The types and scales of the most significant natural disasters are determined. The problems of forming a statistical database on natural disasters are considered, as well as methodological issues of economic measurement of the consequences of natural disasters. Particular attention is paid to the study of the impact of climate change on the financial sector of the economy of the affected regions.


2019 ◽  
Vol 82 ◽  
pp. 436-443 ◽  
Author(s):  
Walter Hein ◽  
Clevo Wilson ◽  
Boon Lee ◽  
Darshana Rajapaksa ◽  
Hans de Moel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document