scholarly journals ORIGIN AND EVOLUTION OF THE OPHIOLITIC COMPLEX OF ZDRALJICA (CENTRAL SERBIA)

2004 ◽  
Vol 36 (1) ◽  
pp. 597
Author(s):  
K. Resimic-Saric ◽  
A. Koroneos ◽  
V. Cvetkovic ◽  
K. Balogh

The ophiolitic complex of Zdraljica (Central Serbia) belongs to the Eastern Branch of the Vardar suture zone. It was emp'aced during the Upper Jurassic. The complex consists predominately of a MORB/VAB-like tholeiitic suite, represented mostly by gabbros and diabases. Small occurrences of cummulitic peridotites, basalts and plagiogranites also appear. The tholeiitic suite is intruded by calc-alkaline intermediate and acid magmas. Geochemical data suggest that the ZOC tholeiitic rocks originated by partial melting of a spinel-lherzolite source. Non-modal batch melting modeling indicates 10 to 15 % of partial melting of such a source. The magmas were later modified by fractional crystallization. One-step major element modeling requires 40% (F=0.60) of fractional crystallization of a mineral assemblage: PI52 gCpxi2 5OI26 iTtn2 9Ap4.4Mgt1.0- The model is supported by the variation patterns of most trace elements.

1986 ◽  
Vol 23 (4) ◽  
pp. 561-578 ◽  
Author(s):  
Christian Picard ◽  
Michel Piboule

In the northeastern part of the Abitibi orogenic belt, the Archean Matagami–Chibougamou greenstone belt (2700 Ma) includes a basal volcanic sequence named the Roy Group, unconformably overlain by a volcano-sedimentary series called the Opemisca Group.The Roy Group, to the west of the town of Chapais, consists of a thick, stratified, and polycyclic volcanic series (thickness = 11 000 m) resembling the large, western Abitibi submarine stratovolcanoes constructed by three mafic to felsic magmatic cycles. The first cycle (Chrissie Formation) shows lateral spreading and is composed only of a meta-andesite and felsic pyroclastite sequence of calc-alkaline affinity. The other two cycles (Obatogamau and Waconichi formations; then Gilman, Blondeau, and Scorpio formations) are characterized by a sequence of repeated MORB type basaltic lava flows of tholeiitic affinity and by intermediate to acid lava and pyroclastic sequences calc-alkaline affinity.The stratigraphic and petrographic data suggest emplacement of mafic lavas on an abyssal plain (Obatogamau Formation) or at a later time on the flanks of a large submarine volcanic shield (Gilman and Blondeau formations). The lava and felsic pyroclastite flows were formed by very explosive eruptions from central spreading type volcanoes above a pre-existing continental crust. In particular, the Scorpio volcanic rocks were emplaced on volcanic islands later dismantled by erosion.The contents and distribution of trace elements and rare earths show that basaltic lavas resulted from an equilibrium partial melting (F = 15–35%) of spinel lherzolite type mantle sources depleted to weakly enriched in Th, Ta, Nb, and light rare-earth elements (LREE), and from fractional crystallization at low pressure of feldspar, clinopyroxene, and olivine. The lavas and the felsic pyroclastites of the Waconichi and Scorpio formations appear to result from partial melting of a mantle source of lherzolite type enriched in LREE and involving some garnet. At a late stage, the melts were probably contaminated by some continental crust materials and then differentiated by fractional crystallization of plagioclase, amphibole, biotite, and magnetite. The lavas in the Chrissie Formation and the middle member of the Gilman Formation seem to result from partial melting of a mantle source enriched in LREE with a composition between the two described above. They were subsequently modified by fractional crystallization of the plagioclase, clinopyroxene, olivine, and titanomagnetite.In general, the mafic to felsic magmatic cycles observed are characterized by a thick sequence of repeated tholeiitic basalt flows similar to those of modern mid-oceanic ridges and by a lava and felsic pyroclastite sequence of calc-alkaline affinity comparable to those occurring in orogenic belts. The transition from one lava sequence to another is marked by a significant chemical discontinuity, and the mantle sources exhibit an increasing enrichment in LREE during a given magmatic cycle. A model is proposed to satisfactorily explain all the stratigraphic, petrographic, and geochemical data implying a hot spot type mechanism, which could be responsible for the cyclic, rising diapirs inside the stratified Archean mantle and for initiating the repeated mantle source meltings, depleted and enriched in LREE, respectively. [Journal Translation]


2021 ◽  
pp. 1-27
Author(s):  
Nora G Abdel Wanees ◽  
Mohamed M El-Sayed ◽  
Khalil I Khalil ◽  
Hossam A Khamis

Abstract The Abu Kharif area in the Northern Eastern Desert consists of contrasting granitic magma suites: a Cryogenian granodiorite suite (850–635 Ma), an Ediacaran monzogranite suite (635–541 Ma) and a Cambrian alkali riebeckite granite suite (541–485 Ma). Tungsten mineralization occurs within W-bearing quartz veins and a disseminated type confined to the monzogranite. Whole-rock geochemical data classify the granodiorite as a late-orogenic I-type with calc-alkaline affinity, while the monzogranite and alkali riebeckite granite represent respectively a post-orogenic highly fractionated I-type with calc-alkaline affinity and an anorogenic A1-subtype with alkaline affinity. Geochemical modelling indicates that the three intrusions represent separate magmatic pulses where the granodiorite was generated by ∼75 % batch partial melting of an amphibolitic source followed by fractional crystallization of hornblende, biotite, apatite and titanite. The monzogranite was formed by 62 % batch partial melting of the normal ‘non-metasomatized’ Pan-African crust of calc-alkaline granite composition followed by fractional crystallization of plagioclase, biotite, K-feldspar, magnetite, ilmenite, with minor apatite and titanite. The alkali riebeckite granite was generated by 65 % batch partial melting of metasomatized Pan-African granite source followed by fractional crystallization of plagioclase, K-feldspar, amphibole and biotite with minor magnetite, apatite and titanite. In general, the parent magmas of the three intrusions were originally enriched in W, but with different concentrations. This W-enrichment would be caused by magmatic-related hydrothermal volatile-rich fluids and concentrated within the monzogranite.


Author(s):  
Blažo Boev ◽  
Vladica Cvetković ◽  
Dejan Prelević ◽  
Kristina Šarić ◽  
Ivan Boev

The study reports and synthesizes the available geological and geochemical data on the East Vardar ophiolites comprising most known occurrences from the South Apuseni Mountains in Romania to the tip of the Chalkidiki Pen-insula in Greece. The summarized geological data suggest that the East Vardar ophiolites are mostly composed of the magmatic sequences, whereas the mantle rocks are very subordinate. The members of the magmatic sequences are characterized by the presence of abundant acid and intermediate volcanic and intrusive rocks. The age of these ophio-lites is paleontologically and radiometrically constrained and these data suggest that the East Vardar ophiolite formed as a short-lived oceanic realm that was emplaced before the uppermost Kimmeridgian. A relatively weak adakitic affinity is shown by intra-ophiolitic acid and intermediate rocks in many East Vardar provinces. It can be taken as evidence that the subduction of the young and hot slab, most likely along the earlier spreading ridge has occurred. A paleo-tectonic reconstruction consisting of four stages is proposed. It involves: a) an early/mid-Jurassic north-northeastward subduction of the West Vardar oceanic plate; b) the formation of a mid-Jurassic volcanic arc and a narrow back-arc oceanic stripe of East Vardar behind it; c) the mid-/Upper Jurassic initiation of East Vardar subduc-tion along the ridge axis, and d) complex and heterogeneous emplacement of the East Vardar ophiolites. So far avail-able data allow for having relatively clear ideas about the origin and evolution of the East Vardar ophiolites. Howev-er, in order to provide better understanding of all aspects of its evolution we need to answer additional questions re-lated to the true structural position of the East Vardar ophiolites slices in Serbia, the exact nature of subduction that caused back-arc spreading (intraoceanic vs subduction under continent?) and the full significance of the adakitic sig-nature shown by rocks in the East Vardar provinces other than Demir Kapija.


2015 ◽  
Vol 153 (3) ◽  
pp. 410-425 ◽  
Author(s):  
BETHAN A. PHILLIPS ◽  
ANDREW C. KERR ◽  
RICHARD BEVINS

AbstractThe Fishguard Volcanic Group represents an excellently preserved example of a volcanic sequence linked to the closure of the Iapetus Ocean. This study re-examines the petrogenesis and proposed tectonic setting for the Llanvirn (467–458 Ma) Fishguard Volcanic Group, South Wales, UK. New major and trace element geochemical data and petrographic observations are used to re-evaluate the magma chamber processes, mantle melting and source region. The new data reveal that the Fishguard Volcanic Group represents a closely related series of basalts, basaltic andesites, dacites and rhyolites originating from a spinel lherzolite source which had been modified by subduction components. The rocks of the Fishguard Volcanic Group are co-genetic and the felsic members are related to the more primitive basalts mainly by low-pressure fractional crystallization. The geochemistry of the lavas was significantly influenced by subduction processes associated with a coeval arc, while significant amounts of assimilation of continental crust along with fractional crystallization appear to have contributed to the compositions of the most evolved lavas. The Fishguard Volcanic Group was erupted into a back-arc basin where extensive rifting but no true seafloor spreading had occurred.


2007 ◽  
Vol 40 (2) ◽  
pp. 884 ◽  
Author(s):  
A. Magganas

Dykes or small stocks of plagiogranitic rocL· occur below the extrusive sequence and in mutually interpenetrating association with the sheeted dyke complex of the Evros Ophiolite, NE Greece. They are classified as tonalités, low silica trondhjemites (LST) and high silica trondhjemites (HST). Pétrographie and geochemical data suggest they resemble oceanic plagiogranites ofSSZ origin. Their normalized rock/ORG diagrams reveal ORG compatible element values, slightly depleted relative to ORG incompatible elements and Ba, Ta and Nb negative anomalies. Plagiogranites also show subparallel, relatively flat REE patterns with variable Eu anomaly. As such geochemical features are also found in the dacitic to rhyodacitic lavas of Evros Ophiolite, it is assumed that plagiogranitic melts, especially of LST composition, presumably fed them. As a first approximation to plagiogranites origin, it is suggested tonalité and HST could have been generated by 5-15 % partial melting of oceanic gabbros, whereas LST may possibly derive by fractional crystallization of a MORB type source. In a later stage, intense hydrothermal metamorphism affected the plagiogranites causing formation of peculiar epidositic spherical clots and veinlets


2019 ◽  
Vol 60 (5) ◽  
pp. 907-944 ◽  
Author(s):  
Jacqueline Vander Auwera ◽  
Olivier Namur ◽  
Adeline Dutrieux ◽  
Camilla Maya Wilkinson ◽  
Morgan Ganerød ◽  
...  

Abstract Where and how arc magmas are generated and differentiated are still debated and these questions are investigated in the context of part of the Andean arc (Chilean Southern Volcanic Zone) where the continental crust is thin. Results are presented for the La Picada stratovolcano (41°S) that belongs to the Central Southern Volcanic Zone (CSVZ) (38°S–41·5°S, Chile) which results from the subduction of the Nazca plate beneath the western margin of the South American continent. Forty-seven representative samples collected from different units of the volcano define a differentiation trend from basalt to basaltic andesite and dacite (50·9 to 65·6 wt % SiO2). This trend straddles the tholeiitic and calc-alkaline fields and displays a conspicuous compositional Daly Gap between 57·0 and 62·7 wt % SiO2. Interstitial, mostly dacitic, glass pockets extend the trend to 76·0 wt % SiO2. Mineral compositions and geochemical data indicate that differentiation from the basaltic parent magmas to the dacites occurred in the upper crust (∼0·2 GPa) with no sign of an intermediate fractionation stage in the lower crust. However, we have currently no precise constraint on the depth of differentiation from the primary magmas to the basaltic parent magmas. Stalling of the basaltic parent magmas in the upper crust could have been controlled by the occurrence of a major crustal discontinuity, by vapor saturation that induced volatile exsolution resulting in an increase of melt viscosity, or by both processes acting concomitantly. The observed Daly Gap thus results from upper crustal magmatic processes. Samples from both sides of the Daly Gap show contrasting textures: basalts and basaltic andesites, found as lavas, are rich in macrocrysts, whereas dacites, only observed in crosscutting dykes, are very poor in macrocrysts. Moreover, modelling of the fractional crystallization process indicates a total fractionation of 43% to reach the most evolved basaltic andesites. The Daly Gap is thus interpreted as resulting from critical crystallinity that was reached in the basaltic andesites within the main storage region, precluding eruption of more evolved lavas. Some interstitial dacitic melt was extracted from the crystal mush and emplaced as dykes, possibly connected to small dacitic domes, now eroded away. In addition to the overall differentiation trend, the basalts to basaltic andesites display variable MgO, Cr and Ni contents at a given SiO2. Crystal accumulation and high pressure fractionation fail to predict this geochemical variability which is interpreted as resulting from variable extents of fractional crystallization. Geothermobarometry using recalculated primary magmas indicates last equilibration at about 1·3–1·5 GPa and at a temperature higher than the anhydrous peridotite solidus, pointing to a potential role of decompression melting. However, because the basalts are enriched in slab components and H2O compared to N-MORB, wet melting is highly likely.


1987 ◽  
Vol 24 (8) ◽  
pp. 1679-1687 ◽  
Author(s):  
Dante Canil ◽  
Mark Brearley ◽  
Christopher M. Scarfe

One hundred mantle xenoliths were collected from a hawaiite flow of Miocene–Pliocene age near Rayfield River, south-central British Columbia. The massive host hawaiite contains subrounded xenoliths that range in size from 1 to 10 cm and show protogranular textures. Both Cr-diopside-bearing and Al-augite-bearing xenoliths are represented. The Cr-diopside-bearing xenolith suite consists of spinel lherzolite (64%), dunite (12%), websterite (12%), harzburgite (9%), and olivine websterite (3%). Banding and veining on a centimetre scale are present in four xenoliths. Partial melting at the grain boundaries of clinopyroxene is common and may be due to natural partial melting in the upper mantle, heating by the host magma during transport, or decompression during ascent.Microprobe analyses of the constituent minerals show that most of the xenoliths are well equilibrated. Olivine is Fo89 to Fo92, orthopyroxene is En90, and Cr diopside is Wo47En48Fs5. More Fe-rich pyroxene compositions are present in some of the websterite xenoliths. The Mg/(Mg + Fe2+) and Cr/(Cr + Al + Fe3+) ratios in spinel are uniform in individual xenoliths, but they vary from xenolith to xenolith. Equilibration temperatures for the xenoliths are 860–980 °C using the Wells geothermometer. The depth of equilibration estimated for the xenoliths using geophysical and phase equilibrium constraints is 30–40 km.


2001 ◽  
Vol 73 (1) ◽  
pp. 99-119 ◽  
Author(s):  
SILVIA R. MEDEIROS ◽  
CRISTINA M. WIEDEMANN-LEONARDOS ◽  
SIMON VRIEND

At the end of the geotectonic cycle that shaped the northern segment of the Ribeira Mobile Belt (Upper Proterozoic to Paleozoic age), a late to post-collisional set of plutonic complexes, consisting of a wide range of lithotypes, intruded all metamorphic units. The Várzea Alegre Intrusive Complex is a post-collisional complex. The younger intrusion consists of an inversely zoned multistage structure envolved by a large early emplaced ring of megaporphyritic charnoenderbitic rocks. The combination of field, petrographic and geochemical data reveals the presence of at least two different series of igneous rocks. The first originated from the partial melting of the mantle. This was previously enriched in incompatible elements, low and intermediate REE and some HFS-elements. A second enrichment in LREE and incompatible elements in this series was due to the mingling with a crustal granitic magma. This mingling process changed the composition of the original tholeiitic magma towards a medium-K calc-alkalic magma to produce a suite of basic to intermediate rock types. The granitic magma from the second high-K, calc-alkalic suite originated from the partial melting of the continental crust, but with strong influence of mantle-derived melts.


Sign in / Sign up

Export Citation Format

Share Document