scholarly journals PLAGIOGRANITIC ROCKS OF EVROS OPHIOLITE, NE GREECE

2007 ◽  
Vol 40 (2) ◽  
pp. 884 ◽  
Author(s):  
A. Magganas

Dykes or small stocks of plagiogranitic rocL· occur below the extrusive sequence and in mutually interpenetrating association with the sheeted dyke complex of the Evros Ophiolite, NE Greece. They are classified as tonalités, low silica trondhjemites (LST) and high silica trondhjemites (HST). Pétrographie and geochemical data suggest they resemble oceanic plagiogranites ofSSZ origin. Their normalized rock/ORG diagrams reveal ORG compatible element values, slightly depleted relative to ORG incompatible elements and Ba, Ta and Nb negative anomalies. Plagiogranites also show subparallel, relatively flat REE patterns with variable Eu anomaly. As such geochemical features are also found in the dacitic to rhyodacitic lavas of Evros Ophiolite, it is assumed that plagiogranitic melts, especially of LST composition, presumably fed them. As a first approximation to plagiogranites origin, it is suggested tonalité and HST could have been generated by 5-15 % partial melting of oceanic gabbros, whereas LST may possibly derive by fractional crystallization of a MORB type source. In a later stage, intense hydrothermal metamorphism affected the plagiogranites causing formation of peculiar epidositic spherical clots and veinlets

2001 ◽  
Vol 73 (1) ◽  
pp. 99-119 ◽  
Author(s):  
SILVIA R. MEDEIROS ◽  
CRISTINA M. WIEDEMANN-LEONARDOS ◽  
SIMON VRIEND

At the end of the geotectonic cycle that shaped the northern segment of the Ribeira Mobile Belt (Upper Proterozoic to Paleozoic age), a late to post-collisional set of plutonic complexes, consisting of a wide range of lithotypes, intruded all metamorphic units. The Várzea Alegre Intrusive Complex is a post-collisional complex. The younger intrusion consists of an inversely zoned multistage structure envolved by a large early emplaced ring of megaporphyritic charnoenderbitic rocks. The combination of field, petrographic and geochemical data reveals the presence of at least two different series of igneous rocks. The first originated from the partial melting of the mantle. This was previously enriched in incompatible elements, low and intermediate REE and some HFS-elements. A second enrichment in LREE and incompatible elements in this series was due to the mingling with a crustal granitic magma. This mingling process changed the composition of the original tholeiitic magma towards a medium-K calc-alkalic magma to produce a suite of basic to intermediate rock types. The granitic magma from the second high-K, calc-alkalic suite originated from the partial melting of the continental crust, but with strong influence of mantle-derived melts.


2020 ◽  
Vol 8 (1) ◽  
pp. 33
Author(s):  
Daama Isaac ◽  
Mbowou Gbambie Isaac Bertrand ◽  
Yamgouot Ngounouno Fadimatou ◽  
Ntoumbe Mama ◽  
Ngounouno Ismaïla

The Garga-Sarali granitoids outcrop in form of large slabs and undistorted large blocks, into a schisto-gneissic basement. These rocks contain mainly muscovite and microcline, followed by K-feldspar, quartz, biotite, pyroxene, zircon and oxides, with coarse-grained to fine-grained textures. Geochemical analysis show that it belongs to differentiated rocks group (granodiorite-granite) with high SiO2 (up to 72 wt%) contents. Their genesis was made from a process of partial melting and fractional crystallization. These rocks are classified as belonging to I- and S-Type, meta-peraluminous, shoshonitic granites; belonging to the domain of volcanic arcs. The rare earth elements patterns suggest a source enriched of incompatible elements. The Nb-Ta and Ti negative anomalies from the multi-element patterns are characteristics of the subduction domains.  


2004 ◽  
Vol 36 (1) ◽  
pp. 597
Author(s):  
K. Resimic-Saric ◽  
A. Koroneos ◽  
V. Cvetkovic ◽  
K. Balogh

The ophiolitic complex of Zdraljica (Central Serbia) belongs to the Eastern Branch of the Vardar suture zone. It was emp'aced during the Upper Jurassic. The complex consists predominately of a MORB/VAB-like tholeiitic suite, represented mostly by gabbros and diabases. Small occurrences of cummulitic peridotites, basalts and plagiogranites also appear. The tholeiitic suite is intruded by calc-alkaline intermediate and acid magmas. Geochemical data suggest that the ZOC tholeiitic rocks originated by partial melting of a spinel-lherzolite source. Non-modal batch melting modeling indicates 10 to 15 % of partial melting of such a source. The magmas were later modified by fractional crystallization. One-step major element modeling requires 40% (F=0.60) of fractional crystallization of a mineral assemblage: PI52 gCpxi2 5OI26 iTtn2 9Ap4.4Mgt1.0- The model is supported by the variation patterns of most trace elements.


2021 ◽  
pp. 1-27
Author(s):  
Nora G Abdel Wanees ◽  
Mohamed M El-Sayed ◽  
Khalil I Khalil ◽  
Hossam A Khamis

Abstract The Abu Kharif area in the Northern Eastern Desert consists of contrasting granitic magma suites: a Cryogenian granodiorite suite (850–635 Ma), an Ediacaran monzogranite suite (635–541 Ma) and a Cambrian alkali riebeckite granite suite (541–485 Ma). Tungsten mineralization occurs within W-bearing quartz veins and a disseminated type confined to the monzogranite. Whole-rock geochemical data classify the granodiorite as a late-orogenic I-type with calc-alkaline affinity, while the monzogranite and alkali riebeckite granite represent respectively a post-orogenic highly fractionated I-type with calc-alkaline affinity and an anorogenic A1-subtype with alkaline affinity. Geochemical modelling indicates that the three intrusions represent separate magmatic pulses where the granodiorite was generated by ∼75 % batch partial melting of an amphibolitic source followed by fractional crystallization of hornblende, biotite, apatite and titanite. The monzogranite was formed by 62 % batch partial melting of the normal ‘non-metasomatized’ Pan-African crust of calc-alkaline granite composition followed by fractional crystallization of plagioclase, biotite, K-feldspar, magnetite, ilmenite, with minor apatite and titanite. The alkali riebeckite granite was generated by 65 % batch partial melting of metasomatized Pan-African granite source followed by fractional crystallization of plagioclase, K-feldspar, amphibole and biotite with minor magnetite, apatite and titanite. In general, the parent magmas of the three intrusions were originally enriched in W, but with different concentrations. This W-enrichment would be caused by magmatic-related hydrothermal volatile-rich fluids and concentrated within the monzogranite.


2020 ◽  
Author(s):  
Veronica Peverelli ◽  
Alfons Berger ◽  
Thomas Pettke ◽  
Holger Stunitz ◽  
Pierre Lanari ◽  
...  

<p>The widespread presence of epidote-bearing veins and hydrous minerals such as micas in meta-granitoid rocks attests to the large extent of hydration of the exhuming continental crust. The ability of epidote (Ca<sub>2</sub>Al<sub>3</sub>Si<sub>3</sub>O<sub>12</sub>(OH) – Ca<sub>2</sub>Al<sub>2</sub>Fe<sup>3+</sup>Si<sub>3</sub>O<sub>12</sub>(OH)) to incorporate a wide variety of trace elements renders this mineral a promising geochemical tracer of circulating fluid(s).</p><p>We report trace element and microstructural data on epidote-bearing veins from the Aar Massif (Central Alps) and from the Albula Pass (Eastern Alps). We characterized and classified the epidote-bearing veins based on their extent of deformation, shape and size of the epidote grains, coexisting minerals, and degree of dynamic recrystallization of associated quartz. Laser ablation ICP-MS data of individual epidote crystals reveal prominent zoning, confirmed by electron probe maps for Sr and Mn. Overall, low to very low Th/U ratios (down to 0.0005 in the Aar Massif veins and 0.001 in the Albula ones) with Th often below limits of detection (< 0.1 µg/g at 16 µm beam size) go along with variably LREE-depleted patterns (and CI Chondrite-normalized La<sub>N</sub>/Yb<sub>N</sub> ~0.35 in the Aar Massif veins and ~0.60 in the Albula Pass veins). Strontium contents are variable (hundreds to thousands of µg/g) and mostly high (up to 10100 µg/g in the Aar Massif samples and 12800 µg/g in the Albula Pass samples). The in-situ geochemical data are linked to the microstructures in order to assess whether microstructures can be related to variations in trace elements, also considering the role of coexisting phases. Moreover, trace element data of samples from the Aar Massif are compared to metamorphic host-rock epidotes and cleft epidotes from the same massif.</p><p>We find that REE patterns of Aar Massif vein epidotes are clearly different than those of metamorphic host-rock epidotes and of cleft epidotes. In addition, REE patterns vary based on the microstructural characteristics of veins. Overall REE patterns of the Albula Pass vein epidotes resemble those from the Aar Massif. Different veins and microstructures define clusters in Sr vs. Y, Eu anomaly vs. Th/U ratios, and Eu anomaly vs. U values. Geochemical heterogeneities are observed among sampling localities within the Aar Massif.</p><p>The fact that the geochemical characteristics of retrograde hydrothermal vein epidotes are clearly different than those of high-grade metamorphic and metamorphic host-rock epidotes, and the relationship between geochemical characteristics and microstructures support the hypothesis that the deformation did not alter the original geochemical record through neomineralization. Our data argue for the potential of epidote as a powerful fluid tracer in the granitoid continental crust.</p>


1986 ◽  
Vol 23 (4) ◽  
pp. 561-578 ◽  
Author(s):  
Christian Picard ◽  
Michel Piboule

In the northeastern part of the Abitibi orogenic belt, the Archean Matagami–Chibougamou greenstone belt (2700 Ma) includes a basal volcanic sequence named the Roy Group, unconformably overlain by a volcano-sedimentary series called the Opemisca Group.The Roy Group, to the west of the town of Chapais, consists of a thick, stratified, and polycyclic volcanic series (thickness = 11 000 m) resembling the large, western Abitibi submarine stratovolcanoes constructed by three mafic to felsic magmatic cycles. The first cycle (Chrissie Formation) shows lateral spreading and is composed only of a meta-andesite and felsic pyroclastite sequence of calc-alkaline affinity. The other two cycles (Obatogamau and Waconichi formations; then Gilman, Blondeau, and Scorpio formations) are characterized by a sequence of repeated MORB type basaltic lava flows of tholeiitic affinity and by intermediate to acid lava and pyroclastic sequences calc-alkaline affinity.The stratigraphic and petrographic data suggest emplacement of mafic lavas on an abyssal plain (Obatogamau Formation) or at a later time on the flanks of a large submarine volcanic shield (Gilman and Blondeau formations). The lava and felsic pyroclastite flows were formed by very explosive eruptions from central spreading type volcanoes above a pre-existing continental crust. In particular, the Scorpio volcanic rocks were emplaced on volcanic islands later dismantled by erosion.The contents and distribution of trace elements and rare earths show that basaltic lavas resulted from an equilibrium partial melting (F = 15–35%) of spinel lherzolite type mantle sources depleted to weakly enriched in Th, Ta, Nb, and light rare-earth elements (LREE), and from fractional crystallization at low pressure of feldspar, clinopyroxene, and olivine. The lavas and the felsic pyroclastites of the Waconichi and Scorpio formations appear to result from partial melting of a mantle source of lherzolite type enriched in LREE and involving some garnet. At a late stage, the melts were probably contaminated by some continental crust materials and then differentiated by fractional crystallization of plagioclase, amphibole, biotite, and magnetite. The lavas in the Chrissie Formation and the middle member of the Gilman Formation seem to result from partial melting of a mantle source enriched in LREE with a composition between the two described above. They were subsequently modified by fractional crystallization of the plagioclase, clinopyroxene, olivine, and titanomagnetite.In general, the mafic to felsic magmatic cycles observed are characterized by a thick sequence of repeated tholeiitic basalt flows similar to those of modern mid-oceanic ridges and by a lava and felsic pyroclastite sequence of calc-alkaline affinity comparable to those occurring in orogenic belts. The transition from one lava sequence to another is marked by a significant chemical discontinuity, and the mantle sources exhibit an increasing enrichment in LREE during a given magmatic cycle. A model is proposed to satisfactorily explain all the stratigraphic, petrographic, and geochemical data implying a hot spot type mechanism, which could be responsible for the cyclic, rising diapirs inside the stratified Archean mantle and for initiating the repeated mantle source meltings, depleted and enriched in LREE, respectively. [Journal Translation]


2020 ◽  
Vol 18 ◽  
pp. 1-13
Author(s):  
CHINEDU UDUMA IBE

Trace and Rare-Earth element geochemical study of twenty samples of migmatitic banded gneisses, garnet biotite schists, dolerites, granites and rhyolites was carried out in a bid to determine their petrogenetic and tectonic significance in the evolution of the southeastern Basement complex of Nigeria. The data shows that partial melting (crustal anatexis) of migmatitic gneisses and schists played a significant role in the evolution of the granitic intrusions. This is supported by the high incompatible (Rb/Sr = 0.16 to 1.31 and Ba/Sr = 0.75 to 6.21) elements ratio in the granitic intrusions than that of the migmatitic gneisses and schists (Rb/Sr, 0.051 to 0.824; Ba/Sr, 0.7 to 5). High ratios of Ba/Sr and Rb/Sr and lesser values of Ba/Rb ratios in some granitic intrusions than in others suggests increasing fractionation during the anatexis. The role of partial melting is also evident in the smooth REE patterns shown by most of these rocks and the negative Eu anomaly as indicated by the values of Eu/Eu* (0.097 to 0.7). LREE enrichment is evident in the high values of Ce/YbN (12.08-174.5), La/YbN (15.2-228.4) and La/SmN (2.6-7.2) in the granitic intrusions. Tectonic discrimination diagrams of the rocks indicate that the basement rocks were most probably formed in a post-collision orogenic setting while the dolerite and the rhyolite were formed in within-plate anorogenic setting.


Lithos ◽  
2021 ◽  
pp. 105968
Author(s):  
Xue Shuai ◽  
Shi-Min Li ◽  
Di-Cheng Zhu ◽  
Qing Wang ◽  
Liang-Liang Zhang ◽  
...  

Author(s):  
S. Aspiotis ◽  
S. Jung ◽  
F. Hauff ◽  
R. L. Romer

AbstractThe late-tectonic 511.4 ± 0.6 Ma-old Nomatsaus intrusion (Donkerhoek batholith, Damara orogen, Namibia) consists of moderately peraluminous, magnesian, calc-alkalic to calcic granites similar to I-type granites worldwide. Major and trace-element variations and LREE and HREE concentrations in evolved rocks imply that the fractionated mineral assemblage includes biotite, Fe–Ti oxides, zircon, plagioclase and monazite. Increasing K2O abundance with increasing SiO2 suggests accumulation of K-feldspar; compatible with a small positive Eu anomaly in the most evolved rocks. In comparison with experimental data, the Nomatsaus granite was likely generated from meta-igneous sources of possibly dacitic composition that melted under water-undersaturated conditions (X H2O: 0.25–0.50) and at temperatures between 800 and 850 °C, compatible with the zircon and monazite saturation temperatures of 812 and 852 °C, respectively. The Nomatsaus granite has moderately radiogenic initial 87Sr/86Sr ratios (0.7067–0.7082), relatively radiogenic initial εNd values (− 2.9 to − 4.8) and moderately evolved Pb isotope ratios. Although initial Sr and Nd isotopic compositions of the granite do not vary with SiO2 or MgO contents, fSm/Nd and initial εNd values are negatively correlated indicating limited assimilation of crustal components during monazite-dominated fractional crystallization. The preferred petrogenetic model for the generation of the Nomatsaus granite involves a continent–continent collisional setting with stacking of crustal slices that in combination with high radioactive heat production rates heated the thickened crust, leading to the medium-P/high-T environment characteristic of the southern Central Zone of the Damara orogen. Such a setting promoted partial melting of metasedimentary sources during the initial stages of crustal heating, followed by the partial melting of meta-igneous rocks at mid-crustal levels at higher P–T conditions and relatively late in the orogenic evolution.


Sign in / Sign up

Export Citation Format

Share Document