scholarly journals A preliminary approach on the use of satellite hyperspectral data for geological mapping

2007 ◽  
Vol 40 (4) ◽  
pp. 1998
Author(s):  
G. K. Nikolakopoulos ◽  
D. A. Vaiopoulos ◽  
G. A. Skianis

During the last decades remote sensing imagery has contributed significantly to mineral exploration. Motivated by the increasing importance of hyperspectral remote sensing, this study investigates the potential of the current-generation satellite hyperspectral data for geological mapping. A narrow-band Hyperion image, acquired in summer 2001, was used. The study area is situated at Milos island. Two different approaches were used for the reduction of the Hyperion bands. First, on the basis of histogram statistics the uncalibrated bands were selected and removed. Then the Minimum Noise Fraction was used to classify the bands according to their signal to noise ratio. The noisiest bands were removed and sixty bands were selected for further processing. In order to make meaningful comparisons between image spectra and laboratory reflectance spetra, the image radiance values must be corrected (calibrated) to reflectance by removing the atmospheric effects. Atmospheric corrections techniques were applied to the selected Hyperion bands. The comparison of the Hyperion hyperspectral data with the JPL spectral library gave quite encouraging results. Further processing of the data has to be done using the image analysis algorithms that have been developed specifically to exploit the extensive information contained in hyperspectral imagery.

Author(s):  
Sara Salehi

Lithological mapping using remote sensing depends, in part, on the identification of rock types by their spectral characteristics. Chemical and physical properties of minerals and rocks determine their diagnostic spectral features throughout the electromagnetic spectrum. Shifts in the position and changes in the shape and depth of these features can be explained by variations in chemical composition of minerals. Detection of such variations is vital for discriminating minerals with similar chemical composition. Compared with multispectral image data, airborne or spaceborne hyperspectral imagery offers higher spectral resolution, which makes it possible to estimate the mineral composition of the rocks under study without direct contact. Arctic environments provide challenging ground for geological mapping and mineral exploration. Inaccessibility commonly complicates ground surveys, and the presence of ice, vegetation and rock-encrusting lichens hinders remote sensing surveys. This study addresses the following objectives: 1. Modelling the impact of lichen on the spectra of the rock substrate; 2. Identification of a robust lichen index for the deconvolution of lichen and rock mixtures and 3. Multiscale hyperspectral analysis of lithologies in areas with abundant lichens.


2019 ◽  
Vol 11 (21) ◽  
pp. 2500 ◽  
Author(s):  
Booysen ◽  
Zimmermann ◽  
Lorenz ◽  
Gloaguen ◽  
Nex ◽  
...  

Traditional exploration techniques usually rely on extensive field work supported by geophysical ground surveying. However, this approach can be limited by several factors such as field accessibility, financial cost, area size, climate, and public disapproval. We recommend the use of multiscale hyperspectral remote sensing to mitigate the disadvantages of traditional exploration techniques. The proposed workflow analyzes a possible target at different levels of spatial detail. This method is particularly beneficial in inaccessible and remote areas with little infrastructure, because it allows for a systematic, dense and generally noninvasive surveying. After a satellite regional reconnaissance, a target is characterized in more detail by plane-based hyperspectral mapping. Subsequently, Remotely Piloted Aircraft System (RPAS)-mounted hyperspectral sensors are deployed on selected regions of interest to provide a higher level of spatial detail. All hyperspectral data are corrected for radiometric and geometric distortions. End-member modeling and classification techniques are used for rapid and accurate lithological mapping. Validation is performed via field spectroscopy and portable XRF as well as laboratory geochemical and spectral analyses. The resulting spectral data products quickly provide relevant information on outcropping lithologies for the field teams. We show that the multiscale approach allows defining the promising areas that are further refined using RPAS-based hyperspectral imaging. We further argue that the addition of RPAS-based hyperspectral data can improve the detail of field mapping in mineral exploration, by bridging the resolution gap between airplane- and ground-based data. RPAS-based measurements can supplement and direct geological observation rapidly in the field and therefore allow better integration with in situ ground investigations. We demonstrate the efficiency of the proposed approach at the Lofdal Carbonatite Complex in Namibia, which has been previously subjected to rare earth elements exploration. The deposit is located in a remote environment and characterized by difficult terrain which limits ground surveys.


1987 ◽  
Vol 22 (S2) ◽  
pp. 225-249 ◽  
Author(s):  
P. S. Griffiths ◽  
P. A. S. Curtis ◽  
S. E. A. Fadul ◽  
P. D. Scholes

2005 ◽  
Vol 42 (12) ◽  
pp. 2173-2193 ◽  
Author(s):  
J R Harris ◽  
D Rogge ◽  
R Hitchcock ◽  
O Ijewliw ◽  
D Wright

A test site in southern Baffin Island, Canada has been established to study the applications of hyperspectral data to lithological mapping. Good bedrock exposure and minimal vegetation cover provide an ideal environment for the evaluation of hyperspectral remote sensing. Airborne PROBE hyperspectral data were collected over the study site during the summer of 2000. Processing methods involved (1) applying a minimum noise fraction (MNF) transformation to the data and visual interpretation of a ternary colour MNF image to produce a lithological–compositional map, and (2) selection of end members from the MNF image followed by matched filtering based on the selected end members to produce a lithological–compositional map. Both methods have produced a lithological map that compares favourably with the existing geological map. Although lichen imparts a similarity to the spectra throughout the visible and near infrared and short-wave infrared ranges, this study has shown that enough variability in the spectra as a function of different mineralogy was present to successfully discriminate one major lithological group (metatonalites) and three compositional units (psammites, quartzites, and monzogranites). Vegetation could be clearly distinguished, which in this area only is a good proxy for mapping metagabbroic rocks. Furthermore, discrimination of slightly different compositional units within the psammites and the metatonalites was also possible. The results from this study indicate that hyperspectral remotely sensed imagery holds promise for lithological mapping in Canada's North, although further analysis is required in different geologic environments in Canada's North to validate hyperspectral remote sensing as a useful aid to litho logical mapping.


2020 ◽  
Author(s):  
Carsten Laukamp ◽  
Maarten Haest ◽  
Thomas Cudahy

Abstract. The integration of surface and subsurface geoscience data is critical for efficient and effective mineral exploration and mining. Publicly accessible datasets to evaluate the various geoscience analytical tools and their effectiveness for characterisation of mineral assemblages and lithologies or discrimination of ore from waste are however scarce. The open access Rocklea Dome 3D Mineral Mapping Test Data Set (Laukamp, 2020; https://doi.org/10.25919/5ed83bf55be6a) provides an opportunity for evaluating proximal and remote sensing data, validated and calibrated by independent geochemical and mineralogical analyses, for exploration of channel-iron deposits (CID) through cover. We present hyperspectral airborne, surface and drill core reflectance spectra collected in the visible-near infrared and shortwave infrared wavelength ranges (VNIR-SWIR; 350 to 2500 nm), as well as whole rock geochemistry obtained by means of X-Ray fluorescence analysis and loss on ignition measurements of drill core samples. The integration of surface with subsurface hyperspectral data collected in the frame of previously published Rocklea Dome 3D Mineral Mapping case studies demonstrated that about 30 % of exploration drill holes were sunk into barren ground and could have been of better use, located elsewhere, if airborne hyperspectral imagery had been consulted for drill hole planning. The remote mapping of transported Tertiary detritals (i.e. potential hosts of channel iron ore resources) versus weathered in situ Archaean geology (i.e. barren ground) has significant implications for other areas where cover (i.e. regolith and/or sediments covering bedrock hosting mineral deposits) hinders mineral exploration. Hyperspectral remote sensing represents a cost-effective method for regolith landform mapping required for planning drilling programs. In the Rocklea Dome area, vegetation unmixing methods applied to airborne hyperspectral data, integrated with subsurface data, resulted in seamless mapping of ore zones from the weathered surface to the base of the CID – a concept that can be applied to other mineral exploration and mineral deposit studies. Furthermore, the associated, independent calibration data allowed to quantify iron oxide phases and associated mineralogy from hyperspectral data. Using the Rocklea Dome data set, novel geostatistical clustering methods were applied to the drill core data sets for ore body domaining that introduced scientific rigour to a traditionally subjective procedure, resulting in reproducible objective domains that are critical for the mining process. Beyond the already published case studies, the Rocklea Dome 3D Mineral Mapping Test Data Set has the potential to develop new methods for advanced resource characterisation and develop new applications that aid exploration for mineral deposits through cover. The here newly presented white mica and chlorite abundance maps derived from airborne hyperspectral highlight the additional applications of remote sensing for geological mapping and could help to evaluate newly launched hyper- and multispectral spaceborne systems for geoscience and mineral exploration.


2021 ◽  
Vol 13 (24) ◽  
pp. 5062
Author(s):  
Mengmeng Yang ◽  
Yong Hu ◽  
Hongzhen Tian ◽  
Faisal Ahmed Khan ◽  
Qingping Liu ◽  
...  

Airborne hyperspectral data play an important role in remote sensing of coastal waters. However, before their application, atmospheric correction is required to remove or reduce the atmospheric effects caused by molecular and aerosol scattering and absorption. In this study, we first processed airborne hyperspectral CASI-1500 data acquired on 4 May 2019 over the Uljin coast of Korea with Polymer and then compared the performance with the other two widely used atmospheric correction approaches, i.e., 6S and FLAASH, to determine the most appropriate correction technique for CASI-1500 data in coastal waters. Our results show the superiority of Polymer over 6S and FLAASH in deriving the Rrs spectral shape and magnitude. The performance of Polymer was further evaluated by comparing CASI-1500 Rrs data with those obtained from the MODIS-Aqua sensor on 3 May 2019 and processed using Polymer. The spectral shapes of the derived Rrs from CASI-1500 and MODIS-Aqua matched well, but the magnitude of CASI-1500 Rrs was approximately 0.8 times lower than MODIS Rrs. The possible reasons for this difference were time difference (1 day) between CASI-1500 and MODIS data, higher land adjacency effect for MODIS-Aqua than for CASI-1500, and possible errors in MODIS Rrs from Polymer.


Author(s):  
S. Priya ◽  
R. Ghosh ◽  
B. K. Bhattacharya

<p><strong>Abstract.</strong> Hyperspectral remote sensing is an advanced remote sensing technology that enhances the ability of accurate classification due to presence of narrow contiguous bands. The large number of continuous bands present in hyperspectral data introduces the problem of computational complexity due to presence of redundant information. There is a need for dimensionality reduction to enhance the ability of users for better characterization of features. Due to presence of high spectral correlation in the hyperspectral datasets, optimum de-correlation technique is required which transforms the hyperspectral data to lower dimensions without compromising with the desirable information present in the data. In this paper, focus has been to reduce the spectral dimensionality problem. So, this research aimed to develop computationally efficient non-linear autoencoder algorithm taking the advantage of non-linear properties of hyperspectral data. The proposed algorithm was applied on airborne hyperspectral image of Airborne Visible Infrared Imaging Spectrometer - Next Generation (AVIRIS-NG) over Anand region of Gujarat and the performance of the algorithm was evaluated. The Signal-to-Noise Ratio (SNR) increased from 22.78 dB to 48.48 dB with increase in number of nodes in bottleneck layer for reconstruction of image. Spectral distortion was also measured using Spectral Angle Mapper Algorithm (SAM), which reduced from 0.38 to 0.05 with increase in number of nodes in bottleneck layer up to 10. So, this algorithm was able to give good reconstruction of original image from the nodes present in the bottleneck layer.</p>


Sign in / Sign up

Export Citation Format

Share Document