scholarly journals Historical earthquakes and tsunamis of the South Ionian Sea occurring from 1591 to 1837

2001 ◽  
Vol 34 (4) ◽  
pp. 1547 ◽  
Author(s):  
G. A. PAPADOPOULOS ◽  
A. PLESSA

We improve the historical earthquake catalogue of the south Ionian Sea by critically reviewing twelve earthquake events occurring in the time interval 1591-1837. For some of them we complete historical information while for others we present information not taken into account in previous seismological studies. The procedure of réévaluation concluded with significant results. For example, the 5 May 1622 earthquake in Zakynthos , considered so far as a large destructive event, proved to have been only a felt event without any destructive effects, while the strong shocks of 21 August 1591 and 28 October 1766 (O.S.) are new events in the seismological literature. Tsunami phenomena reported in association with particular earthquakes also were reevaluated. It is shown that the large earthquake of 29 December 1820 in Zakynthos was not followed by a destructive tsunami flooding, as thought by previous authors, while evidence is presented that the sea-wave reportedly occurring in the Corinth Gulf in association with an aftershock of the above earthquake on 6 January 1821 very likely was not a tsunami but a storm surge that attacked the coast of Patras. The results obtained are of importance for the seismic and tsunami hazards assessment in the Ionian Sea.

1995 ◽  
Vol 38 (5-6) ◽  
Author(s):  
G. D'Addezio ◽  
F. R. Cinti ◽  
D. Pantosti

The combination of paleoseismological and historical investigation can be used to obtain a complete knowledge of past earthquakes. In Italy the 1000 year-long record of historical earthquakes provides an opportunity to compare data from the catalogue with results from paleoseismologic investigations. Trenching results along the Ovindoli-Pezza Fault (OPF). in the Abruzzi region. showed two surface faulting events. The most recent of these events occurred after 1019 A.D. and should be reported in the Catalogue of Italian Seismicity. Nevertheless, the earthquake appears to be missed or not well located in the Catalogue. In order to define in which century a large earthquake on the OPF should have clearly left a sign in the historical record, we carried out historical investigations back to the XI century. The studies were mainly focu5ed on disclosing possible <<negative>> e vidence for the occurrence of the most recent event along the OPF. No clear records related to this event were found but on the basis of the information we obtained the occurrence of this earthquake can be constrained between 1019 A.D. and the XV century. possibly between 1019 A.D. and XIII century.


2004 ◽  
Vol 36 (3) ◽  
pp. 1389 ◽  
Author(s):  
A. Fokaefs ◽  
G. A. Papadopoulos

Historical documentation of strong shocks for Lefkada Island, Ionian Sea, exists since the 16th century A.D. In this paper we establish a relation between magnitude and maximum intensity from twenty-nine instrumental events that hit the area in the past. Then, on the basis of historical documentary sources we reevaluate the intensities of strong historical earthquakes, their maximum intensity being observed on Lefkada in the time interval from AD1577 to 1911, recalculate their magnitudes on the basis of the magnitude/intensity relation and, finally, compile a new catalogue of historical earthquakes. The results obtained are of importance for the seismicity studies and seismic hazard assessment in the area.


Author(s):  
Alexander J.P. Houben ◽  
Geert-Jan Vis

Abstract Knowledge of the stratigraphic development of pre-Carboniferous strata in the subsurface of the Netherlands is very limited, leaving the lithostratigraphic nomenclature for this time interval informal. In two wells from the southwestern Netherlands, Silurian strata have repeatedly been reported, suggesting that these are the oldest ever recovered in the Netherlands. The hypothesised presence of Silurian-aged strata has not been tested by biostratigraphic analysis. A similar lack of biostratigraphic control applies to the overlying Devonian succession. We present the results of a palynological study of core material from wells KTG-01 and S05-01. Relatively low-diversity and poorly preserved miospore associations were recorded. These, nonetheless, provide new insights into the regional stratigraphic development of the pre-Carboniferous of the SW Netherlands. The lower two cores from well KTG-01 are of a late Silurian (Ludlow–Pridoli Epoch) to earliest Devonian (Lochkovian) age, confirming that these are the oldest sedimentary strata ever recovered in the Netherlands. The results from the upper cored section from the pre-Carboniferous succession in well KTG-01 and the cored sections from the pre-Carboniferous succession in well S05-01 are more ambiguous. This inferred Devonian succession is, in the current informal lithostratigraphy of the Netherlands, assigned to the Banjaard group and its subordinate Bollen Claystone formation, of presumed Frasnian (i.e. early Late Devonian) age. Age-indicative Middle to Late Devonian palynomorphs were, however, not recorded, and the overall character of the poorly preserved palynological associations in wells KTG-01 and S05-01 may also suggest an Early Devonian age. In terms of lithofacies, however, the cores in well S05-01 can be correlated to the upper Frasnian – lower Famennian Falisolle Formation in the Campine Basin in Belgium. Hence, it remains plausible that an unconformity separates Silurian to Lower Devonian strata from Upper Devonian (Frasnian–Famennian) strata in the SW Netherlands. In general, the abundance of miospore associations points to the presence of a vegetated hinterland and a relatively proximal yet relatively deep marine setting during late Silurian and Early Devonian times. This differs markedly from the open marine depositional settings reported from the Brabant Massif area to the south in present-day Belgium, suggesting a sediment source to the north. The episodic presence of reworked (marine) acritarchs of Ordovician age suggests the influx of sedimentary material from uplifted elements on the present-day Brabant Massif to the south, possibly in relation to the activation of a Brabant Arch system.


2020 ◽  
Vol 70 (10) ◽  
pp. 1315-1323
Author(s):  
Xuechao Wang ◽  
Qin-Yan Liu ◽  
Dandan Sui ◽  
Dongxiao Wang

Author(s):  
Peter McGinty

The seismic hazard from ground motions during a New Zealand earthquake is variable, and is dependent on the different tectonic processes that occur throughout the country. A modem probabilistic seismic hazard analysis (PSHA) combines various data sets to take account of these different environmental effects and rates of occurrence. Earthquake catalogue data can be used to give the rate of background or distributed seismicity in historical times, while paleoseismic data can be used to constrain the return time of large earthquakes. The background seismicity is assumed to occur as a time-independent Poisson process. To apply this assumption to a new PSHA of New Zealand, completeness levels for the New Zealand earthquake catalogue were established, and aftershocks or clusters of events that occurred close together in both space and time were removed from the catalogue. The level of hazard in a region can be depth-dependent, that is the risk of a large earthquake may come from a shallow crustal event or a deep subduction zone event, both having the same epicentral location but resulting in different levels of damage. The New Zealand earthquake catalogue has too many events that have been assigned restricted depths to be ignored. These events have been statistically redistributed into shallow crustal zones or deep subducted slab zones based on the last eleven years of catalogue data, when improvements in technology have reduced the number of restricted events.


2019 ◽  
Author(s):  
Eugenio E. Vogel ◽  
Felipe G. Brevis ◽  
Denisse Pastén ◽  
Víctor Muñoz ◽  
Rodrigo A. Miranda ◽  
...  

Abstract. Four geographical zones are defined along the trench that is formed due to the subduction of the Nazca Plate underneath the South American plate; they are denoted A, B, C and D from North to South; zones A, B and D have had a major earthquake after 2010 (8.0), while zone C has not, thus offering a contrast for comparison. For each zone a sequence of intervals between consecutive seisms with magnitudes ≥ 3.0 is formed and then characterized by Shannon entropy and mutability. These methods show correlation after a major earthquake in what is known as the aftershock regime but they show independence otherwise. Exponential adjustments for these parameters reveal that mutability offers a wider range for the parameters characterizing the recovery to the values of the parameters defining the background activity for each zone before a large earthquake. It is found that the background activity is particularly high for zone A, still recovering for Zone B, reaching values similar to those of Zone A in the case of Zone C (without recent major earthquake) and oscillating around moderate values for Zone D. It is discussed how this can be an indication for more risk of an important future seism in the cases of Zones A and C. The similarities and differences between Shannon entropy and mutability are discussed and explained.


2015 ◽  
Vol 11 (4) ◽  
pp. 2649-2664 ◽  
Author(s):  
J. I. Martínez ◽  
S. Obrochta ◽  
Y. Yokoyama ◽  
R. W. Battarbee

Abstract. The Atlantic Multidecadal Oscillation (AMO), is a major driving climate mechanism, in the eastern Caribbean Sea and the South Atlantic Ocean in relation to the dynamics of the South American Monsoon System (SAMS) for the late Holocene. Here we document the AMO signal in the San Nicolás-1 core of the Cauca paleolake (Santa Fé–Sopetrán Basin) in the northern Andes. Wavelet spectrum analysis of the gray scale of the San Nicolás-1 core provides evidence for a 70 yr AMO periodicity for the 3750 to 350 yr BP time interval, whose pattern is analogous to the one documented for the Cariaco Basin. This supports a possible correlation between enhanced precipitation and ENSO variability with a positive AMO phase during the 2000 to 1500 yr BP interval, and its forcing role on the Cauca ria lake deposits, which led to increased precipitation and to the transition from a igapo (black water) to a varzea (white water) environment ca. 3000 yr BP.


The Holocene ◽  
2011 ◽  
Vol 21 (7) ◽  
pp. 1151-1158 ◽  
Author(s):  
Martin S. Brook ◽  
Vince E. Neall ◽  
Robert B. Stewart ◽  
Rob C. Dykes ◽  
Derek L. Birks

Evidence for the timings of inter-hemispheric climate fluctuations during the Holocene is important, with mountain glacier moraine systems routinely used as a proxy for climate. In New Zealand such evidence for glacier expansion during the late Holocene is fragmentary and is limited to glaciers in a narrow zone within the Southern Alps. Here, we present the first evidence for late-Holocene glacier expansion on the North Island of New Zealand in the form of two unconsolidated debris ridges on the south side of the stratovolcano, Mt Taranaki/Mt Egmont, at ~1920 m a.s.l. The two ridges are aligned north–south along the western and eastern sides of a small basin (Rangitoto Flat), which is formed between the main Taranaki cone (to the north), and the parasitic cone of Fanthams Peak (to the south). The approximate age of the ridges is constrained by dated eruptive events and the relationship between ridge locations and the spatial positioning of adjacent volcanic landforms. We propose the ridges formed as two lateral moraines on the margins of a cirque glacier during the final construction phase of Fanthams Peak between 3.3 and 0.5 ka BP, during late-Holocene time. This time interval accords with published cosmogenic 10Be dating of moraine-building episodes in the Southern Alps, indicating the Mt Taranaki moraines are a response to the same regional climatic forcings.


2021 ◽  
Vol 8 ◽  
Author(s):  
Du Peng ◽  
Xu Yueren ◽  
Tian Qinjian ◽  
Li Wenqiao

As historical earthquake records are simple, determining the source parameters of historical strong earthquakes over an extended period is difficult. There are numerous uncertainties in the study of historical earthquakes based on limited literature records. Co-seismic landslide interpretation combined with historical documents can yield the possibility of reducing these uncertainties. The dense co-seismic landslides can be preserved for hundreds to thousands of years in Loess Plateau, North China; furthermore, there are notable attribute differences between earthquake landslides and rainfall-triggered landslides. Along the southwestern margin of the Ordos Block, only one severe earthquake has been recorded in the past 3,000 years. The records of “Sanchuan exhaustion and Qishan collapse” provide clues for an investigation of the 780 BC Qishan earthquake. In this study, combined with historical documents, current high-resolution Google Earth images were used to extract historical landslides along the southwestern of the Ordos Block. There were 6,876 landslides with a total area of 643 km2. The landslide-intensive areas were mainly distributed along the Longxian–Qishan–Mazhao Fault in the loess valley area on the northeastern side of the fault. Loess tableland and river terraces occur on the southwest side of the fault; dense landslides have not been examined due to the topographical conditions in this area. By analyzing the spatial distribution of historical earthquake damage in this region, comparing the characteristics of rainfall-triggered landslides, and combining existing dating results for bedrock collapse and loess landslides, the interpretation of dense historical landslides can be linked to the Qishan Earthquake. The interpretation results are associated with historical records. Analyses of current earthquake cases show that the distribution of dense landslides triggered by strong earthquakes can indicate the episeismic area of an earthquake. In addition, the non-integrated landslide catalog without small- and medium-scale coseismic landslides can be used to effectively determine the source parameters of historical strong earthquakes and perform quantitative evaluations. This study evaluates the focal parameters of the 780 BC Qishan earthquake based on interpretations of the spatial distribution range of historical landslides as representations of the range of the extreme earthquake zone.


2009 ◽  
Vol 47 (2-3) ◽  
Author(s):  
R. Camassi

A complete survey of historical earthquake investigation in Italy cannot be compressed into a few pages, since it would entail making a summary of widely different phases of research (performed by past scholars and by contemporary scientists and historians) and taking into account the widely different historical contexts, methodological assumptions and critical awareness of each of them. This short note only purposes to chart the main stages of the progress made by Italian historical seismology, from the late 17th century compilation by Bonito(1691) up to the latest parametric catalogue (Working Group CPTI, 1999).


Sign in / Sign up

Export Citation Format

Share Document