scholarly journals Geomorphological, hydrographical and sedimentological processes at the Serres basin due to quaternary fault tectonics

2001 ◽  
Vol 34 (1) ◽  
pp. 451
Author(s):  
Α. ΨΙΛΟΒΙΚΟΣ ◽  
Ε. ΒΑΒΛΙΑΚΗΣ ◽  
Κ. ΒΟΥΒΑΛΙΔΗΣ ◽  
Ε. ΠΑΠΑΦΙΛΙΠΠΟΥ-ΠΕΝΝΟΥ

On the S W foothills of Mt. Menikion and the NE part of Serres basin, four zones of composite alluvial fans have been formed. The upper zone of thick hard fanglomerates lies at altitudes of 280 to 600 m on Mt. Menikion schists and marbles. The high zone of loose fanglomerates, with red-brown sand matrix, lies at altitudes of 200 to 350 m on the neogene deposits. The intermediate zone of mixed coarse and fine elastics lies at altitudes of 80 to 140 m on neogene deposits. The lower zone of gravel, sand and silt deposits lies at altitudes of 10 to 60 m on quaternary terrace deposits. Each zone is approximately 13 - 17 km long and 1-2 km wide, with E/SE - W/NW trend, almost parallel to the main fault lines of the area. The fan zones were deposited along the slopes of Mt. Menikion and Serres basin, owing to the fault tectonics of the area. Several E/SE - W/NW trending parallel to each other listric faults, were formed on the basement on Mt. Menikion and the neogene deposits of Serres basin. Their blocks slided and turned downstream along the faults, so that their surface inclined backwards. Close to the faults, parallel valleys were formed. They filled up with quaternary deposits, brought down by activated torrents. The torrents flowed transversely to the fault blocks. At the inner parts of the blocks they deposited clastic material in the form of alluvial fans. In the outer – higher part of the blocks they were incised in the rocks or the neogene sediments, to form narrow valleys, with terraces along their walls. The staircase development of the relief finally resulted in a staircase development of the fan zones. The two zones, upper and high, seem to be Pleistocene in age and the torrents have already incised in the fan material. The two zones, intermediate and lower, seem to be Holocene in age and are still active. Tectonic activity seems to have been the main cause of sediment entrapment in the Serres basin and the low sediment delivery rate of the river Strymon during the Quaternary.

Author(s):  
Ajeng Sekarkirana Pramesti Kameswara ◽  
Nana Sulaksana ◽  
Murni Sulastri ◽  
P. P. Raditya R.

The research area is very interesting to study to determine the characterization of the active tectonic influence of the Cisanggarung watershed, West Java. The research area is in Kuningan Regency, West Java. The purpose of this study was to determine the Relative Tectonic Activity Index (Iatr) in the Cisanggarung Watershed. Through the method approach used to identify the Relative Tectonic Activity Index (Iatr) using geomorphic indexes, watershed asymmetry factors (Af), watershed shape index (Bs), valley width, and height valley ratio (Vf), and mountainous face sinusitis (Smf). The Iatr research area is divided into 4 classes: Class 1 (very high), class 2 (high), class 3 (medium), and class 4 (low). Iatr distribution in 14 sub-watersheds covering an area of 286.24 km2 is Class 1 around 14.44% of the watershed area (41.35 km2) which is located in sub-watershed 1, with Smf values 1.157, Vf 0.3, Af 72.15, and Bs 4.3. Class 2 around 28.67% of the watershed area (82.09 km2) is located in sub-watershed 14, with Smf values 1.26, Vf 0.77, Af 15.69, Bs 1.01. Class 3 around 54.16% of the watershed area (155.03 km2) is located in sub-watersheds 2, 3, 6, 7, 8, 10, 11, 12, with an average value of Smf 2, Vf 1.54, Af 51.77, Bs 1.75, and Class 4 about 2.71% of the watershed area (7.76 km2) is located in sub- watersheds 4, 5, 9, 13, with an average value of Smf 2.25, Vf 8.18, Af 55.2, Bs 1.65. The results of the morphometric analysis indicated that the study area was mostly affected by tectonics and erosion.


2021 ◽  
Vol 13 (2) ◽  
pp. 208-214
Author(s):  
Nafise HOSEINI ◽  
◽  
Shahram BAFTI ◽  
Reza DERAKHSHANI ◽  
Mohammad GHANBARIAN ◽  
...  

Morphotectonic indices are useful instruments for investigating the effect of tectonic activity in a certain region. Calculation of these indicators using the advantages of Geographical Information System, GIS, in a large area is useful for detecting potential disorders related to active tectonics. This method is useful in regions on which few morphotectonic studies have been conducted. An example of such areas can be the watersheds of the Sirch mountainous region. The watersheds of the Sirch region located in Central Iran’s zone in the southeast of Iran are a very ideal zone to evaluate the concepts of these indicators in the prediction of the relative tectonic activity according to the investigation of drainage systems or mountain fronts. Based on the values of the calculated indices including Form Factor (FF), Compaction Coefficient (CC), Ratio of Circularity (RC), Ratio of Elongation (RE), relative Basin Height (BH), and Ruggedness Number (RN), a final indicator called Active Tectonic Indicator (ATI) is obtained. The latter is a combination of the abovementioned indicators and evaluates the morphotectonic activity based on the shape of the watersheds. By measuring and combining these indicators, the tectonic activity stage of the Sirch region was determined by analyzing the watersheds of this region.


2018 ◽  
pp. 77-83
Author(s):  
F. Z. Khafizov

The article is devoted to the main patterns of tectonic development in the Middle Ob for the period from the tops of the middle Jurassic to the Eocene. It is shown that during this period of time in the tectonic development of the territory there were periods of quiet sedimentation and very active tectonic activity. In the history of the tectonic development of the Middle Ob four major stages are distinguished: two is quiet (the Jurassic and the Upper Cretaceous) and two are very active with large-scale multidirectional movements that led to a significant increase in the amplitudes of the structures (from the Cretaceous to the roof of the Cenomanian century).The article describes the methodology of the correlation analysis used in the study of the history of tectonic development in the territory.


2016 ◽  
Vol 47 (3) ◽  
pp. 1201
Author(s):  
I. Papadopoulos ◽  
C. Papazachos ◽  
A. Savvaidis ◽  
N. Theodoulidis ◽  
F. Vallianatos ◽  
...  

The city of Chania is located at the Western-North part of the island of Crete. It is mostly built over Neogene sediments of unknown thickness. In the southern part of the city the Chania basin is developed, filled mainly by Quaternary deposits overlyingthe deep Neogene sediments. In this complex geological setting, we conducted over 200 single station measurements of ambient noise, aiming to estimate the predominant frequency of the subsurface formations. The obtained results for the HVSR data show a different behavior between sites located on Neogene and Quaternarydeposits. In general, Neogene sediments show a single peak at low frequencies (below 1Hz, typically in the range 0.4-0.6Hz), indicating a very thick layer overlying the bedrock (Trypalion and Plattenkalk limestones). On the other hand, measurements at Quaternary deposits show two peaks, with the first one similar to the Neogene formations, while the second one is identified at higher frequencies, typically~0.8-4.0 Hz. Simulation of ambient noise 1-D models show a good correlation between the experimental and theoretical HVSR curves, especially when the initial model consists of two layers (typically Neogene sediments overlying high-velocity bedrock formations) with a clear identification of the lower frequency HVSR peak, while for three layered models (typically Quaternary sediments and underlying softerNeogene and Neogene/bedrock high-velocity formations) results are more complicated, although both HVSR frequencies can be partly reconstructed. 


1994 ◽  
Vol 65 (1) ◽  
pp. 55-70 ◽  
Author(s):  
J. Raitala
Keyword(s):  

2021 ◽  
Author(s):  
Paul Santi ◽  
Francis Rengers

<p>Wildfire is a global phenomenon that is expected to increase in extent and severity due to shifting land management practices and climate change. It removes vegetation, deposits ash, influences water-repellent soil formation, and physically weathers rock. These changes typically lead to increased erosion through sheetwash, rilling, rock spalling, and dry ravel, as well as increased mass movement in the form of floods, debris flows, rockfall, and landslides. Post-wildfire changes in these processes bring about landform changes as hillslopes are lowered and stream channels aggrade or incise at increased rates. Research has documented increases in erosion after wildfire ranging from 2-1000 times the pre-fire rates. Post-wildfire landscape lowering by erosion has been measured in the western U.S. at magnitudes of 2 mm per year, with sediment delivery at the mouths of canyons increased in the range of 160-1000% during the post-wildfire window of disturbance. Furthermore, post-wildfire sediment transport enhances the development of alluvial fans, debris fans, and talus cones. Debris-flow likelihood is increased following wildfire, such that modest rainstorms with <2 year recurrence intervals are typically sufficient to trigger debris flows with volumes much larger (270-540%) than at unburned sites. In the western U.S., as much as 25-50% of alluvial fan accumulation can be attributed to post-wildfire debris flows and other post-wildfire fluvial transport. The window of disturbance to the landscape caused by wildfire is typically on the order of three to four years, with some effects persisting up to 30 years.  Consequently, wildfire is an important agent of geomorphic change.</p>


Author(s):  
Leszek Starkel ◽  
Dominik Płoskonka ◽  
Grzegorz Adamiec

AbstractIn the part of Sikkimese-Bhutanese Himalaya the youngest Siwalik overthrust had not developed, and the piedmont zone with extensive fans forms a semicircular gulf dismembered by several faults and minor overthrusts. Some uplifted parts of older deformed alluvial fans contain the lenses of organic clays which were earlier dated at 22–34 ka BP byTo distinguish various alluvial formations and phases of tectonic activity the authors dated older levels in several localities by OSL method as well as investigated soil profiles. Most mature soils over elevated blocks built of coarse alluvia were dated between 50 and 60 ka BP. Probably the previous


Quaternary ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 11
Author(s):  
Kathleen S. Gersie ◽  
Ronald T. Van Balen ◽  
Salomon B. Kroonenberg

Suriname is part of the Guiana Shield, a cratonic area in northern South America. It is drained by several major rivers that are characterized by river terraces. The formation of terraces along the Suriname river is closely related to climatic changes during the Quaternary, due to the effects of climate on vegetation and precipitation changes. The terraces along the Suriname River valley show levels of 5, 15, and 20 m above the current mean water level. The reason behind the scarce terrace differentiation is the limited amount of long-term vertical incision. Therefore, each level along the Suriname River valley encompasses multiple climate cycles, which cannot be separated on morphological grounds. The limited incision reflects tectonic stability, which is typical for cratonic areas. Fieldwork along the river combined with topographic maps were used to determine and correlate the various terrace levels. While in the upper part of the river, climatically induced changes in vegetation cover and sediment delivery is dominant. In the lowermost reach, sea level change is especially important.


2018 ◽  
Vol 91 (1) ◽  
pp. 431-449 ◽  
Author(s):  
Kevin Ratnayaka ◽  
Ralf Hetzel ◽  
Jens Hornung ◽  
Andrea Hampel ◽  
Matthias Hinderer ◽  
...  

AbstractAlluvial fans record climate-driven erosion and sediment-transport processes and allow reconstructing past environmental conditions. Here we investigate the sedimentation history of two alluvial fans located in formerly glaciated valleys of the Cordillera Oriental, Peru.10Be exposure ages from the fan surfaces and radiocarbon ages from the fan interiors constrain the final stages of fan formation. The10Be and14C ages cluster mainly between 13.3–9.3 ka and 11,500–9700 cal yr BP, respectively. Our age data set indicates that—after deglaciation—large amounts of fan sediment were deposited until ∼10 ka, when sedimentation rates declined rather abruptly. This pattern is supported by10Be erosion rates for the fan catchments, because under the assumption of constant erosion the time needed to erode the material stored in the fans significantly exceeds their age. Correlating our ages with regional climate records indicates that precipitation exerts the primary control on fan sedimentation. Two periods with elevated lake levels and increased precipitation between 18 and 14.5 ka and from 13 to 11.5 ka resulted in rapid deposition of large fan lobes. Subsequently, lower precipitation rates decreased erosion in the catchments and sediment delivery to the fans, which have remained largely inactive since ∼9.5 ka.


Sign in / Sign up

Export Citation Format

Share Document