scholarly journals Towards the Keplerian sequence: Realistic equations of state in rapidly rotating neutron stars

2020 ◽  
Vol 27 ◽  
pp. 85
Author(s):  
Polychronis Koliogiannis Koutmiridis ◽  
Charalampos Moustakidis

Neutron stars are among the densest known objects in the universe and an ideal laboratory for the strange physics of super-condensed matter. In the present work, we investigate the Keplerian (mass-shedding) sequence of rotating neutron stars by employing realistic equations of state based on various theoretical nuclear models. In particular, we compute the moment of inertia and angular momentum of neutron stars against mass-shedding and secular axisymmetric instability. We mainly focus on the dependence of these properties from the bulk properties of neutron stars. Another property that studied in detail, is the dimensionless spin parameter (kerr parameter) of rotating neutron stars at the mass-shedding limit. In addition, supramassive time evolutionary rest mass sequences, which have their origin in general relativity, are explored. Supramassive sequences have masses exceeding the maximum mass of a non-rotating neutron star and evolve toward catastrophic collapse to a black hole. Important information can be gained from the astrophysical meaning of the kerr parameter and the supramassive sequences in neutron stars. Finally, the effects of the Keplerian sequence, in connection with the latter, may provide us constraints on the high density part of the equation of state of cold neutron star matter.

2017 ◽  
Vol 26 (04) ◽  
pp. 1750015 ◽  
Author(s):  
Yeunhwan Lim ◽  
Chang Ho Hyun ◽  
Chang-Hwan Lee

In this paper, we investigate the cooling of neutron stars with relativistic and nonrelativistic models of dense nuclear matter. We focus on the effects of uncertainties originated from the nuclear models, the composition of elements in the envelope region, and the formation of superfluidity in the core and the crust of neutron stars. Discovery of [Formula: see text] neutron stars PSR J1614−2230 and PSR J0343[Formula: see text]0432 has triggered the revival of stiff nuclear equation of state at high densities. In the meantime, observation of a neutron star in Cassiopeia A for more than 10 years has provided us with very accurate data for the thermal evolution of neutron stars. Both mass and temperature of neutron stars depend critically on the equation of state of nuclear matter, so we first search for nuclear models that satisfy the constraints from mass and temperature simultaneously within a reasonable range. With selected models, we explore the effects of element composition in the envelope region, and the existence of superfluidity in the core and the crust of neutron stars. Due to uncertainty in the composition of particles in the envelope region, we obtain a range of cooling curves that can cover substantial region of observation data.


Universe ◽  
2020 ◽  
Vol 6 (5) ◽  
pp. 63
Author(s):  
Hui Wang ◽  
Zhi-Fu Gao ◽  
Huan-Yu Jia ◽  
Na Wang ◽  
Xiang-Dong Li

Young pulsars are thought to be highly magnetized neutron stars (NSs). The crustal magnetic field of a NS usually decays at different timescales in the forms of Hall drift and Ohmic dissipation. The magnetization parameter ω B τ is defined as the ratio of the Ohmic timescale τ O h m to the Hall drift timescale τ H a l l . During the first several million years, the inner temperature of the newly born neutron star cools from T = 10 9 K to T = 1.0 × 10 8 K, and the crustal conductivity increases by three orders of magnitude. In this work, we adopt a unified equations of state for cold non-accreting neutron stars with the Hartree–Fock–Bogoliubov method, developed by Pearson et al. (2018), and choose two fiducial dipole magnetic fields of B = 1.0 × 10 13 G and B = 1.0 × 10 14 G, four different temperatures, T, and two different impurity concentration parameters, Q, and then calculate the conductivity of the inner crust of NSs and give a general expression of magnetization parameter for young pulsars: ω B τ ≃ ( 1 − 50 ) B 0 / ( 10 13 G) by using numerical simulations. It was found when B ≤ 10 15 G, due to the quantum effects, the conductivity increases slightly with the increase in the magnetic field, the enhanced magnetic field has a small effect on the matter in the low-density regions of the crust, and almost has no influence the matter in the high-density regions. Then, we apply the general expression of the magnetization parameter to the high braking-index pulsar PSR J1640-4631. By combining the observed arrival time parameters of PSR J1640-4631 with the magnetic induction equation, we estimated the initial rotation period P 0 , the initial dipole magnetic field B 0 , the Ohm dissipation timescale τ O h m and Hall drift timescale τ H a l l . We model the magnetic field evolution and the braking-index evolution of the pulsar and compare the results with its observations. It is expected that the results of this paper can be applied to more young pulsars.


2018 ◽  
Vol 620 ◽  
pp. A69 ◽  
Author(s):  
B. Haskell ◽  
J. L. Zdunik ◽  
M. Fortin ◽  
M. Bejger ◽  
R. Wijnands ◽  
...  

Context. Rapidly rotating neutron stars are an ideal laboratory to test models of matter at high densities. In particular, the maximum rotation frequency of a neutron star depends on the equation of state and can be used to test models of the interior. However, observations of the spin distribution of rapidly rotating neutron stars show evidence for a lack of stars spinning at frequencies higher than f ≈ 700 Hz, well below the predictions of theoretical equations of state. This has generally been taken as evidence of an additional spin-down torque operating in these systems, and it has been suggested that gravitational wave torques may be operating and be linked to a potentially observable signal. Aims. We aim to determine whether additional spin-down torques (possibly due to gravitational wave emission) are necessary, or if the observed limit of f ≈ 700 Hz could correspond to the Keplerian (mass-shedding) break-up frequency for the observed systems, and is simply a consequence of the currently unknown state of matter at high densities. Methods. Given our ignorance with regard to the true equation of state of matter above nuclear saturation densities, we make a minimal physical assumption and only demand causality, that is, that the speed of sound in the interior of the neutron star should be lower than or equal to the speed of light c. We then connected our causally limited equation of state to a realistic microphysical crustal equation of state for densities below nuclear saturation density. This produced a limiting model that gave the lowest possible maximum frequency, which we compared to observational constraints on neutron star masses and frequencies. We also compared our findings with the constraints on the tidal deformability obtained in the observations of the GW170817 event. Results. We rule out centrifugal breakup as the mechanism preventing pulsars from spinning faster than f ≈ 700 Hz, as the lowest breakup frequency allowed by our causal equation of state is f ≈ 1200 Hz. A low-frequency cutoff, around f ≈ 800 Hz could only be possible when we assume that these systems do not contain neutron stars with masses above M ≈ 2 M⊙. This would have to be due either to selection effects, or possibly to a phase transition in the interior of the neutron star that leads to softening at high densities and a collapse to either a black hole or a hybrid star above M ≈ 2 M⊙. Such a scenario would, however, require a somewhat unrealistically stiff equation of state for hadronic matter, in tension with recent constraints obtained from gravitational wave observations of a neutron star merger.


Universe ◽  
2019 ◽  
Vol 5 (10) ◽  
pp. 204 ◽  
Author(s):  
Domenico Logoteta ◽  
Ignazio Bombaci

We discuss the constraints on the equation of state (EOS) of neutron star matter obtained by the data analysis of the neutron star-neutron star merger in the event GW170807. To this scope, we consider two recent microscopic EOS models computed starting from two-body and three-body nuclear interactions derived using chiral perturbation theory. For comparison, we also use three representative phenomenological EOS models derived within the relativistic mean field approach. For each model, we determine the β -stable EOS and then the corresponding neutron star structure by solving the equations of hydrostatic equilibrium in general relativity. In addition, we calculate the tidal deformability parameters for the two neutron stars and discuss the results of our calculations in connection with the constraints obtained from the gravitational wave signal in GW170817. We find that the tidal deformabilities and radii for the binary’s component neutron stars in GW170817, calculated using a recent microscopic EOS model proposed by the present authors, are in very good agreement with those derived by gravitational waves data.


2021 ◽  
Vol 252 ◽  
pp. 05004
Author(s):  
Polychronis Koliogiannis ◽  
Charalampos Moustakidis

The knowledge of the equation of state is a key ingredient for many dynamical phenomena that depend sensitively on the hot and dense nuclear matter, such as the formation of protoneutron stars and hot neutron stars. In order to accurately describe them, we construct equations of state at FInite temperature and entropy per baryon for matter with varying proton fractions. This procedure is based on the momentum dependent interaction model and state-of-the-art microscopic data. In addition, we investigate the role of thermal and rotation effects on microscopic and macroscopic properties of neutron stars, including the mass and radius, the frequency, the Kerr parameter, the central baryon density, etc. The latter is also connected to the hot and rapidly rotating remnant after neutron star merger. The interplay between these quantities and data from late observations of neutron stars, both isolated and in matter of merging, could provide useful insight and robust constraints on the equation of state of nuclear matter.


Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 189
Author(s):  
Alexander Balakin ◽  
Alexei Ilin ◽  
Anna Kotanjyan ◽  
Levon Grigoryan

Based on the Rheological Paradigm, we extend the equations of state for relativistic spherically symmetric static neutron stars, taking into consideration the derivative of the matter pressure along the so-called director four-vector. The modified equations of state are applied to the model of a zero-temperature neutron condensate. This model includes one new parameter with the dimensionality of length, which describes the rheological type screening inside the neutron star. As an illustration of the new approach, we consider the rheological type generalization of the non-relativistic Lane–Emden theory and find numerically the profiles of the pressure for a number of values of the new guiding parameter. We have found that the rheological type self-interaction makes the neutron star more compact, since the radius of the star, related to the first null of the pressure profile, decreases when the modulus of the rheological type guiding parameter grows.


2018 ◽  
Vol 33 (31) ◽  
pp. 1844020 ◽  
Author(s):  
T. F. Motta ◽  
P. A. M. Guichon ◽  
A. W. Thomas

Recent proposals have suggested that a previously unknown decay mode of the neutron into a dark matter particle could solve the long lasting measurement problem of the neutron decay width. We show that, if the dark particle in neutron decay is the major component of the dark matter in the universe, this proposal is in disagreement with modern astrophysical data concerning neutron star masses.


2018 ◽  
Vol 27 (16) ◽  
pp. 1950002 ◽  
Author(s):  
Zeinab Rezaei

The dark matter (DM) in neutron stars can exist from the lifetime of the progenitor or when captured by this compact object. The properties of DM that enter the neutron stars through each step could be different from each other. Here, we investigate the structure of neutron stars which are influenced by the DM in two processes. Applying a generalization of two-fluid formalism to three-fluid one and the equation-of-state from the rotational curves of galaxies, we explore the structure of double DM admixed neutron stars. The behavior of the neutron and DM portions for these stars is considered. In addition, the influence of the DM equations of state on the stars with different contributions of visible and DM are studied. The gravitational redshift of these stars in different cases of DM equations of state is investigated.


2011 ◽  
Vol 7 (S285) ◽  
pp. 337-339
Author(s):  
Wynn C. G. Ho ◽  
Craig O. Heinke ◽  
Daniel J. Patnaude ◽  
Peter S. Shternin ◽  
Dmitry G. Yakovlev

AbstractThe cooling rate of young neutron stars gives direct insight into their internal makeup. Using Chandra observations of the 330-year-old Cassiopeia A supernova remnant, we find that the temperature of the youngest-known neutron star in the Galaxy has declined by 4% over the last 10 years. The decline is explained naturally by superconductivity and superfluidity of the protons and neutrons in the stellar core. The protons became superconducting early in the life of the star and suppressed the early cooling rate; the neutron star thus remained hot before the (recent) onset of neutron superfluidity. Once the neutrons became superfluid, the Cooper pair-formation process produced a splash of neutrino emission which accelerated the cooling and resulted in the observed rapid temperature decline. This is the first time a young neutron star has been seen to cool in real time, and is the first direct evidence, from cooling observations, of superfluidity and superconductivity in the core of neutron stars.


2017 ◽  
Vol 26 (01n02) ◽  
pp. 1740014 ◽  
Author(s):  
James M. Lattimer

Neutron stars are not only mines for clues to dense matter physics but may also be the auspicious sources of half of all nuclei heavier than [Formula: see text] in the universe, including the auric isotopes. Although the cold dense matter above the nuclear saturation density cannot be directly explored in the laboratory, gilded constraints on the properties of matter from 1 to 10 times higher density can now be panned from neutron star observations. We show how upcoming observations, such as gravitational wave from mergers, precision timing of pulsars, neutrinos from neutron star birth and X-rays from bursts and thermal emissions, will provide the bullion from which further advances can be smelted.


Sign in / Sign up

Export Citation Format

Share Document