scholarly journals bcbioRNASeq: R package for bcbio RNA-seq analysis

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1976 ◽  
Author(s):  
Michael J. Steinbaugh ◽  
Lorena Pantano ◽  
Rory D. Kirchner ◽  
Victor Barrera ◽  
Brad A. Chapman ◽  
...  

RNA-seq analysis involves multiple steps from processing raw sequencing data to identifying, organizing, annotating, and reporting differentially expressed genes. bcbio is an open source, community-maintained framework providing automated and scalable RNA-seq methods for identifying gene abundance counts. We have developed bcbioRNASeq, a Bioconductor package that provides ready-to-render templates and wrapper functions to post-process bcbio output data. bcbioRNASeq automates the generation of high-level RNA-seq reports, including identification of differentially expressed genes, functional enrichment analysis and quality control analysis.

F1000Research ◽  
2018 ◽  
Vol 6 ◽  
pp. 1976 ◽  
Author(s):  
Michael J. Steinbaugh ◽  
Lorena Pantano ◽  
Rory D. Kirchner ◽  
Victor Barrera ◽  
Brad A. Chapman ◽  
...  

RNA-seq analysis involves multiple steps, from processing raw sequencing data to identifying, organizing, annotating, and reporting differentially expressed genes. bcbio is an open source, community-maintained framework providing automated and scalable RNA-seq methods for identifying gene abundance counts. We have developed bcbioRNASeq, a Bioconductor package that provides ready-to-render templates, objects and wrapper functions to post-process bcbio RNA sequencing output data. bcbioRNASeq helps automate the generation of high-level RNA-seq reports, facilitating the quality control analyses, identification of differentially expressed genes and functional enrichment analyses.


2020 ◽  
Vol 9 (2) ◽  
pp. LMT30
Author(s):  
Chuanli Ren ◽  
Weixiu Sun ◽  
Xu Lian ◽  
Chongxu Han

Aim: To screen and identify key genes related to the development of smoking-induced lung adenocarcinoma (LUAD). Materials & methods: We obtained data from the GEO chip dataset GSE31210. The differentially expressed genes were screened by GEO2R. The protein interaction network of differentially expressed genes was constructed by STRING and Cytoscape. Finally, core genes were screened. The overall survival time of patients with the core genes was analyzed by Kaplan–Meier method. Gene ontology and Kyoto encyclopedia of genes and genomes bioaccumulation was calculated by DAVID. Results: Functional enrichment analysis indicated that nine key genes were actively involved in the biological process of smoking-related LUAD. Conclusion: 23 core genes and nine key genes among them were correlated with adverse prognosis of LUAD induced by smoking.


Genome ◽  
2017 ◽  
Vol 60 (12) ◽  
pp. 1021-1028 ◽  
Author(s):  
M.H. Ye ◽  
H. Bao ◽  
Y. Meng ◽  
L.L. Guan ◽  
P. Stothard ◽  
...  

While some research has looked into the host genetic response in pigs challenged with specific viruses or bacteria, few studies have explored the expression changes of transcripts in the peripheral blood of sick pigs that may be infected with multiple pathogens on farms. In this study, the architecture of the peripheral blood transcriptome of 64 Duroc sired commercial pigs, including 18 healthy animals at entry to a growing facility (set as a control) and 23 pairs of samples from healthy and sick pen mates, was generated using RNA-Seq technology. In total, 246 differentially expressed genes were identified to be specific to the sick animals. Functional enrichment analysis for those genes revealed that the over-represented gene ontology terms for the biological processes category were exclusively immune activity related. The cytokine–cytokine receptor interaction pathway was significantly enriched. Nine functional genes from this pathway encoding members (as well as their receptors) of the interleukins, chemokines, tumor necrosis factors, colony stimulating factors, activins, and interferons exhibited significant transcriptional alteration in sick animals. Our results suggest a subset of novel marker genes that may be useful candidate genes in the evaluation and prediction of health status in pigs under commercial production conditions.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Siying He ◽  
Hui Sun ◽  
Yifang Huang ◽  
Shiqi Dong ◽  
Chen Qiao ◽  
...  

Purpose. MiRNAs have been widely analyzed in the occurrence and development of many diseases, including pterygium. This study aimed to identify the key genes and miRNAs in pterygium and to explore the underlying molecular mechanisms. Methods. MiRNA expression was initially extracted and pooled by published literature. Microarray data about differentially expressed genes was downloaded from Gene Expression Omnibus (GEO) database and analyzed with the R programming language. Functional and pathway enrichment analyses were performed using the database for Annotation, Visualization and Integrated Discovery (DAVID). The protein-protein interaction network was constructed with the STRING database. The associations between chemicals, differentially expressed miRNAs, and differentially expressed genes were predicted using the online resource. All the networks were constructed using Cytoscape. Results. We found that 35 miRNAs and 301 genes were significantly differentially expressed. Functional enrichment analysis showed that upregulated genes were significantly enriched in extracellular matrix (ECM) organization, while downregulated genes were mainly involved in cell death and apoptotic process. Finally, we concluded the chemical-gene affected network, miRNA-mRNA interacted networks, and significant pathway network. Conclusion. We identified lists of differentially expressed miRNAs and genes and their possible interaction in pterygium. The networks indicated that ECM breakdown and EMT might be two major pathophysiological mechanisms and showed the potential significance of PI3K-Akt signalling pathway. MiR-29b-3p and collagen family (COL4A1 and COL3A1) might be new treatment target in pterygium.


2022 ◽  
Author(s):  
Pingluo Xu ◽  
Shunmou Huang ◽  
Xiaoqiao Zhai ◽  
Xiaofan Li ◽  
Haibo Yang ◽  
...  

Abstract Background: Phytoplasmas induce diseases in more than 1,000 plant species and cause substantial ecological damage and economic losses, but the specific pathogenesis of phytoplasma has not yet been clarified. N6-methyladenosine sequencing (m6A-seq) has been applied mainly to model plants and not to woody plants. Results: In this study, we applied m6A-seq to study changes in m6A modification in the Paulownia fortunei genome after phytoplasma infection. We found that the m6A modification level in seedlings infected with the phytoplasma that causes Paulownia witches' broom (PaWB) was slightly higher than the m6A modification level in PaWB-infected seedlings treated with 60 mg·L−1 methyl methanesulfonate (MMS). MMS has been shown to restore PaWB-infected seedlings to their normal form and no phytoplasma can be detected in MMS-treated PaWB-infected seedlings. RNA sequencing (RNA-seq) and m6A-seq were used to analyze the expression of genes with m6A peaks and m6A motifs in genes, respectively. The correlation analysis between the RNA-seq and m6A-seq data detected that a total of 315 differentially methylated genes were predicted to be significantly differentially expressed at the transcriptome level. The functions of genes related to PaWB were predicted by functional enrichment analysis, and two genes related to maintenance of the basic mechanism of stem cells in shoot apical meristem were discovered. One of the genes encodes the receptor protein kinase CLV2 (Paulownia_LG2G000076), and the other gene encodes the homeobox transcription factor STM (Paulownia_LG15G000976). The m6A modification levels were higher in PaWB-infected seedlings than they were in MMS-treated seedlings. In addition, genes F-box (Paulownia_LG17G000760) and MSH5 (Paulownia_LG8G001160) had exon skipping and mutually exclusive exon types of alternative splicing in PaWB-infected seedling treated with MMS. RT-PCR verified that the alternative splicing of these two genes was related to m6A modification. Conclusions: In this study, we applied m6A-seq to determine methylation levels in phytoplasma-infected Paulownia, and combined m6A-seq with transcriptome analysis to screen differentially expressed genes associated with PaWB. Also analyzed the effect of m6A methylation on alternative splicing. In future studies, we plan to verify genes directly related to PaWB and methylation-related enzymes in Paulownia to elucidate the pathogenicity mechanism of PaWB caused by phytoplasma invasion.


2019 ◽  
Vol 15 (10) ◽  
pp. 20190554 ◽  
Author(s):  
Kerry L. McGowan ◽  
Courtney N. Passow ◽  
Lenin Arias-Rodriguez ◽  
Michael Tobler ◽  
Joanna L. Kelley

Eye regression occurs across cave-dwelling populations of many species and is often coupled with a decrease or loss in eye function. Teleost fishes are among the few vertebrates to undergo widespread colonization of caves and often exhibit eye regression with blindness. Cave populations of the poeciliid fish Poecilia mexicana (cave molly) exhibit reduced—albeit functional—eyes, offering the opportunity to investigate partial eye regression. We sequenced eye transcriptomes of cave and surface populations of P. mexicana to identify differentially expressed genes that potentially underlie eye regression in cave mollies. We identified 28 significantly differentially expressed genes, 20 of which were directly related to light sensitivity, eye structure and visual signaling. Twenty-six of these genes were downregulated in cave compared to surface populations. Functional enrichment analysis revealed eye-related gene ontologies that were under-represented in cave mollies. In addition, a set of co-expressed genes related to vision and circadian rhythm was correlated with habitat type (cave versus surface). Our study suggests that differential gene expression plays a key role in the beginning evolutionary stages of eye regression in P. mexicana , shedding further light on regressive evolution in cavefish.


2019 ◽  
Vol 15 ◽  
pp. 117693431983881
Author(s):  
Xiangfeng He ◽  
Wanyue Li ◽  
Wenzhu Zhang ◽  
Xiaotong Jin ◽  
Awraris Getachew Shenkute ◽  
...  

Lily basal rot, caused by Fusarium oxysporum f. sp. lilii, is one of the most serious diseases of lily. Although the lily germplasm which is resistant to F. oxysporum has been used in disease-resistant breeding, few studies on its molecular mechanism of disease resistance have been reported. To comprehensively study the mechanism of resistance to F. oxysporum, transcriptome sequencings of root tissues from Lilium pumilum inoculated with F. oxysporum or sterile water for 6, 12, or 24 h were performed. A total of 50 GB of data were obtained from the transcriptome sequencings of the 6 L. pumilum samples, and 217 098 Unigenes were obtained after the de novo assembly, of which 38.36% Unigenes were annotated. The sequencing results showed that the numbers of differentially expressed genes at 6, 12, and 24 h after inoculation compared with the control were 111, 254, and 2500, respectively. The functional enrichment analysis of the differentially expressed genes showed that several pathways were involved in responses of L. pumilum, mainly including starch and sucrose metabolism, glycolysis/gluconeogenesis, phenylpropanoid biosynthesis, plant hormone signal transduction, flavonoid biosynthesis, vitamin B6 (VB6) biosynthesis, acid biosynthesis, proteasome, and ribosome. Transcription factor analysis revealed that the WRKY and ERF families played important roles in responses of L. pumilum to F. oxysporum. The results of this study elucidate the molecular responses to F. oxysporum in lily and lay a theoretical foundation for improving lily breeding and strategies for lily basal rot resistance.


2021 ◽  
Author(s):  
Mingyi Yang ◽  
Yani Su ◽  
Yao Ma ◽  
Yirixiati Aihaiti ◽  
Peng Xu

Abstract Objective: To study the potential biomarkers and related pathways in osteoarthritis (OA) synovial lesions, and to provide theoretical basis and research directions for the pathogenesis and treatment of OA. Methods: Download the microarray data sets GSE12021 and GSE82107 from Gene Expression Omnibus. GEO2R recognizes differentially expressed genes. Perform functional enrichment analysis of differentially expressed genes and construct protein-protein interaction network. Cytoscape performs module analysis and enrichment analysis of top-level modules. Further identify the Hub gene and perform functional enrichment analysis. TargetScan, miRDB and miRWalk three databases predict the target miRNAs of Hub gene and identify key miRNAs. Results: Finally, 10 Hub genes and 17 key miRNAs related to the progression of OA synovitis were identified. NF1, BTRC and MAPK14 may play a vital role in OA synovial disease. Conclusion: The Hub genes and key miRNAs discovered in this study may be potential biomarkers in the development of OA synovitis, and provide research methods and target basis for the pathogenesis and treatment of OA.


2021 ◽  
Author(s):  
Yong Li ◽  
tao chen ◽  
Manman Yang ◽  
hu han ◽  
Dan Jiang ◽  
...  

Background: The genetic mechanism of goat polledness has been studied for decades, but identifying causative variants and functional genes remains challenging. Results: Using a genome-wide association study (GWAS), we identified a significant striking locus for polledness in two different goat breeds. To reduce the linkage disequilibrium among variants for localizing causative variants in the finer region, we sequenced 79 goats from six Chinese native breeds (Jining Gray, Matou, Guizhou black, Yunnan black bone, Chaidamu, and Ujumqin) and identified 483.5 kb CNV (150,334,567-150,818,099) translocated into the previously identified 11.7 kb polled intersex syndrome region, which was consistent with previous research using intersex goat populations. Within the 483.5 kb CNV, a ~322 bp horn-specific element, similar to the superfamily of tRNA-derived families of SINEs, located at the first intron of the ERG gene was identified. The results of the GO enrichment analysis showed that the Horn-SINE element-associated genes were involved in both nervous system and head development. Finally, we used RNA sequencing to investigate gene expression profiles in the horn bud and skin tissues of horned and polled goats. We identified 1077 and 1222 differentially expressed genes between the horn bud and skin tissue in polled and horned goats, respectively. We also identified 367 differentially expressed genes in horn buds between polled and horned animals and found that the two CNV-related genes, ERG and FOXL2 were upregulated in the horn bud of polled goats. Gene functional enrichment analysis demonstrated that the downregulated genes in the horn bud of polled goats were enriched in skeletal system development, whereas the upregulated genes were significantly overexpressed in muscle tissue development.


Sign in / Sign up

Export Citation Format

Share Document