scholarly journals Sub-chronic effects of Baccharis dracunculifolia treatment on biochemical, oxidative, and histopathological parameters in diabetic rats

F1000Research ◽  
2022 ◽  
Vol 11 ◽  
pp. 34
Author(s):  
Ricardo Aparecido Pereira ◽  
Albimara Hey ◽  
Alexandre Lustoza de Carli ◽  
Camila Garcia Salvador Sanches ◽  
Jardel Cristiano Bordion ◽  
...  

Background: Oxidative stress and the mild inflammatory process present in diabetes play a critical role in the pathogenesis of the disease and its comorbidities. This understanding has opened new avenues and targets for developing improved treatments since the risk factors associated with diabetes may be reduced through non-pharmacological interventions. In this sense, plant extracts could be efficient in preventing or assisting these pathological conditions treatment. Methods: Diabetes mellitus was induced in 24 rats, which were allocated in 4 groups: Control (CT), Control+Baccharis (CT-B), Diabetes (DB), and Diabetes+Baccharis (DB-B). For 28 days, the animals of CT-B and DB-B groups were treated, via gavage, with B. dracunculifolia extract at 50 mg.kg-1. Results: The DB group presented higher values than the DB-B group on parameters such as creatinine (26.42%), urea (31.42%), and triglycerides (60.80%). Creatinine and triglycerides values of DB-B group (0.39±0.01 e 75.0±8.4, receptively) were equivalent to the values of CT group (0.32±0.01 e 71.7±5.4) and of CT-B group (0.39±0.01, and 58.8±4.5). The treatment with B. dracunculifolia improved the levels of fasting glucose and response of glucose tolerance (32%), insulin (52,17%) and lipid peroxidation (liver 33.33%, kidney 38.77%) when compared to the DB group. Conclusions: The phenolic compounds and the anti-inflammatory activity of the extract of Baccharis dracunculifolia may be responsible for the hypoglycemic effect observed in the study.

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1332
Author(s):  
Gilda M. Iova ◽  
Horia Calniceanu ◽  
Adelina Popa ◽  
Camelia A. Szuhanek ◽  
Olivia Marcu ◽  
...  

Background: There is a growing interest in the correlation between antioxidants and periodontal disease. In this study, we aimed to investigate the effect of oxidative stress and the impact of two antioxidants, curcumin and rutin, respectively, in the etiopathology of experimentally induced periodontitis in diabetic rats. Methods: Fifty Wistar albino rats were randomly divided into five groups and were induced with diabetes mellitus and periodontitis: (1) (CONTROL)—control group, (2) (DPP)—experimentally induced diabetes mellitus and periodontitis, (3) (DPC)—experimentally induced diabetes mellitus and periodontitis treated with curcumin (C), (4) (DPR)—experimentally induced diabetes mellitus and periodontitis treated with rutin (R) and (5) (DPCR)—experimentally induced diabetes mellitus and periodontitis treated with C and R. We evaluated malondialdehyde (MDA) as a biomarker of oxidative stress and reduced glutathione (GSH), oxidized glutathione (GSSG), GSH/GSSG and catalase (CAT) as biomarkers of the antioxidant capacity in blood harvested from the animals we tested. The MDA levels and CAT activities were also evaluated in the gingival tissue. Results: The control group effect was statistically significantly different from any other groups, regardless of whether or not the treatment was applied. There was also a significant difference between the untreated group and the three treatment groups for variables MDA, GSH, GSSG, GSH/GSSG and CAT. There was no significant difference in the mean effect for the MDA, GSH, GSSG, GSH/GSSG and CAT variables in the treated groups of rats with curcumin, rutin and the combination of curcumin and rutin. Conclusions: The oral administration of curcumin and rutin, single or combined, could reduce the oxidative stress and enhance the antioxidant status in hyperglycemic periodontitis rats.


2016 ◽  
Vol 29 (suppl 1) ◽  
pp. 3-7 ◽  
Author(s):  
Cacio Ricardo WIETZYCOSKI ◽  
João Caetano Dallegrave MARCHESINI ◽  
Sultan AL-THEMYAT ◽  
Fabiola Shons MEYER ◽  
Manoel Roberto Maciel TRINDADE

ABSTRACT Background: Type 2 Diabetes Mellitus is a multifactorial syndrome with severe complications. Oxidative stress is accepted as a causal factor of chronic complications Aim: To demonstrate alterations in oxidative stress after metabolic surgery. Methods: Twenty-four 2-day-old Wistar rats were used. In 16, Type 2 Diabetes Mellitus was induced by 100 mg/kg streptozotocin injection. The development of diabetes was confirmed after 10 weeks using an oral glucose tolerance test. Eight diabetic rats composed the diabetic surgical group; the remaining eight composed the diabetic group. Eight animals in which diabetes was not induced formed the clinical control group. The Marchesini technique was used in the diabetic surgical group. After 90 days, the rats were sacrificed, and the oxidative stress markers were measured. Results: Thiobarbituric acid reactive substances, superoxide dismutase and catalase were significantly reduced in the diabetic surgical group compared to the diabetic group. Conclusion: The duodenojejunostomy was effective in controlling the exacerbated oxidative stress present in diabetic rats.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Bonaventure Chukwunonso Obi ◽  
Theophine Chinwuba Okoye ◽  
Victor Eshu Okpashi ◽  
Christiana Nonye Igwe ◽  
Edwin Olisah Alumanah

Diabetes mellitus is one of the serious global health problems affecting a significant proportion of both developed and developing countries. Overproduction of free radicals and oxidative stress has been associated with the development of diabetic complications. In the present study, the antioxidant effects of metformin (MET), glibenclamide (GLI), and repaglinide (REP) were evaluated in alloxan-induced diabetic rats. The findings from this study may possibly help in understanding the efficacy of these standard drugs in managing the complications arising from diabetes mellitus (DM). Alloxan (130 mg/kg BW) was administered as a single dose to induce diabetes. Four (4) groups of rats (n=6) were used; group 1 served as diabetic control while groups 2, 3, and 4 were the diabetic test groups that received MET (25 mg/kg), GLI (2.5 mg/kg), and REP (0.5 mg/kg), respectively. The result of the study showed significant (p<0.05) improvement in the altered antioxidant enzymes (SOD, CAT) and GSH concentration in diabetic treated rats compared with the diabetic control group. MET and REP produced significant effect on the MDA concentration while GLI showed insignificant reduction in the MDA concentration compared with the diabetic control. Findings from this study suggest that the administration of MET, GLI, and REP exerts significant antioxidant effects in alloxan-induced diabetic rats, thus contributing to the protective effect against oxidative stress-induced damage during diabetic complications.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Subrata Kumar Biswas

Oxidative stress has been implicated in many chronic diseases. However, antioxidant trials are so far largely unsuccessful as a preventive or curative measure. Chronic low-grade inflammatory process, on the other hand, plays a central role in the pathogenesis of a number of chronic diseases. Oxidative stress and inflammation are closely related pathophysiological processes, one of which can be easily induced by another. Thus, both processes are simultaneously found in many pathological conditions. Therefore, the failure of antioxidant trials might result from failure to select appropriate agents that specifically target both inflammation and oxidative stress or failure to use both antioxidants and anti-inflammatory agents simultaneously or use of nonselective agents that block some of the oxidative and/or inflammatory pathways but exaggerate the others. To examine whether the interdependence between oxidative stress and inflammation can explain the antioxidant paradox we discussed in the present review the basic aspects of oxidative stress and inflammation and their relationship and dependence.


2017 ◽  
Vol 86 ◽  
pp. 363-367 ◽  
Author(s):  
Mohammad Rahimi-Madiseh ◽  
Esfandiar Heidarian ◽  
Soleiman Kheiri ◽  
Mahmoud Rafieian-Kopaei

2011 ◽  
Vol 48 (1) ◽  
pp. 66-71 ◽  
Author(s):  
Jacqueline Nelisis Zanoni ◽  
Eleandro Aparecido Tronchini ◽  
Sheila Alves Moure ◽  
Ivan Domicio da Silva Souza

CONTEXT: Peripheral neuropathy is one of the chronic complications of diabetes mellitus and is directly related to gastrointestinal consequences of the disease. Myenteric neurons are affected in some pathological conditions such as diabetic neuropathy. The imbalance between cellular antioxidants and free radicals, leading to an increase in oxidative stress, is considered one of the main factors responsible for neuronal damages in diabetes. Drugs that reduce the oxidative stress may play a significant role in the treatment of neurological complications of diabetes mellitus. OBJECTIVE: To evaluate the effect of L-glutamine supplementation on the myenteric neurons from the cecum and duodenum of Wistar rats with streptozotocin-induced diabetes mellitus. METHODS: The animals were divided in four groups (n = 5): non-treated normoglycemics, normoglycemics treated with L-glutamine, non-treated diabetics and diabetics treated with L-glutamine from the 4th day of diabetes induction on. The amino acid L-glutamine was added to their diet at 1%. Giemsa's technique was employed to stain the myenteric neurons. We determined the cell body area of 500 neurons in each group studied. The quantitative analysis was performed by sampling in an area of 16.6 mm² in the cecum and 3.6 mm² in the duodenum of each animal. RESULTS: After the supplementation with L-glutamine in the duodenum, we observed a preservation of neuronal density in groups normoglycemic and diabetic (P<0.05). We also observed a preservation of the cell bodies area in diabetic animals (group treated with L-glutamine) (P<0.05). In the cecum, that preservation was not evident. CONCLUSION: Supplementation with L-glutamine (1%) promoted a neuroprotective effect on the myenteric neurons from the duodenum of rats, both in terms of natural aging and of diabetes mellitus.


2016 ◽  
Vol 103 (4) ◽  
pp. 459-468 ◽  
Author(s):  
V Ghorbanzadeh ◽  
M Mohammadi ◽  
G Mohaddes ◽  
H Dariushnejad ◽  
L Chodari ◽  
...  

Background Oxidative stress plays a critical role in the pathogenesis and progression of type 2 diabetes and diabetic-associated cardiovascular complications. This study investigated the impact of crocin combined with voluntary exercise on heart oxidative stress indicator in high-fat diet-induced type 2 diabetic rats. Materials and methods Rats were divided into four groups: diabetes, diabetic-crocin, diabetic-voluntary exercise, diabetic-crocin-voluntary exercise. Type 2 diabetes was induced by high-fat diet (4 weeks) and injection of streptozotocin (intraperitoneally, 35 mg/kg). Animals received crocin orally (50 mg/kg); voluntary exercise was performed alone or combined with crocin treatment for 8 weeks. Finally, malondialdehyde (MDA), activity of antioxidant enzymes, superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) were measured spectrophotometrically. Results Treatment of diabetic rats with crocin and exercise significantly decreased the levels of MDA (p < 0.001) and increased the activity of SOD, GPx, and CAT compared with the untreated diabetic group. In addition, combination of exercise and crocin amplified their effect on antioxidant levels in the heart tissue of type 2 diabetic rats. Conclusion We suggest that a combination of crocin with voluntary exercise treatment may cause more beneficial effects in antioxidant defense system of heart tissues than the use of crocin or voluntary exercise alone.


2020 ◽  
Author(s):  
Bingmei Sun ◽  
Hua Yan ◽  
Chao Li ◽  
Linlin Yin ◽  
Fei Li ◽  
...  

Abstract Background: Gestational diabetes mellitus has a long-term effect on pregnant women. Walnut (Juglans regia L.) oil-derived polyunsaturated fatty acid (PUFA) possesses multifarious pharmacological activities. This study investigated the beneficial effects of walnut oil-derived PUFA on glucose metabolism, pregnancy outcomes, oxidative stress, and lipid metabolism in gestational diabetes mellitus.Methods: The GDM rat model was generated by intraperitoneal injection of streptozotocin (40 mg/kg) on gestational day (GD) 6, GD7 and GD8. The differences between groups were estimated using one-way ANOVA followed by the Tukey’s multiple comparison test for post-hoc analysis.Results: The results indicated that PUFA could mitigate GDM in pregnant diabetic rats, as embodied by the decrease of fasting blood glucose and the increase of plasma insulin and hepatic glycogen levels. Also, PUFA could suppress oxidative stress in pregnant diabetic rats, as reflected by the decrease of malondialdehyde (MDA) content, an increase of superoxide dismutase (SOD), catalase (CAT) and gutathione peroxidase (GSH-Px) activities. PUFA could also mitigate the abnormal changes of lipid profiles in plasma and hepatic tissue. Moreover, the relative mRNA expression of sterol regulatory element-binding transcription factor-1 (SREBP-1), stearoyl-CoA desaturase-1 (SCD-1), fatty acid synthase (FAS), and acetyl-coenzyme A carboxylase (ACC), was suppressed by PUFA in pregnant diabetic rats.Conclusions: These results suggested that PUFA supplementation during pregnancy is beneficial in preventing diabetic complications in pregnant rats.


Sign in / Sign up

Export Citation Format

Share Document