scholarly journals Zika antiviral chemotherapy: identification of drugs and promising starting points for drug discovery from an FDA-approved library

F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 2523 ◽  
Author(s):  
Bruno S. Pascoalino ◽  
Gilles Courtemanche ◽  
Marli T. Cordeiro ◽  
Laura H. V. G. Gil ◽  
Lucio H. Freitas-Junior

Background The recent epidemics of Zika virus (ZIKV) implicated it as the cause of serious and potentially lethal congenital conditions such microcephaly and other central nervous system defects, as well as the development of the Guillain-Barré syndrome in otherwise healthy patients. Recent findings showed that anti-Dengue antibodies are capable of amplifying ZIKV infection by a mechanism similar to antibody-dependent enhancement, increasing the severity of the disease. This scenario becomes potentially catastrophic when the global burden of Dengue and the advent of the newly approved anti-Dengue vaccines in the near future are taken into account. Thus, antiviral chemotherapy should be pursued as a priority strategy to control the spread of the virus and prevent the complications associated with Zika. Methods Here we describe a fast and reliable cell-based, high-content screening assay for discovery of anti-ZIKV compounds. This methodology has been used to screen the National Institute of Health Clinical Collection compound library, a small collection of FDA-approved drugs. Results and conclusion From 725 FDA-approved compounds triaged, 29 (4%) were found to have anti-Zika virus activity, of which 22 had confirmed (76% of confirmation) by dose-response curves. Five candidates presented selective activity against ZIKV infection and replication in a human cell line. These hits have abroad spectrum of chemotypes and therapeutic uses, offering valuable opportunities for selection of leads for antiviral drug discovery.

2018 ◽  
Vol 62 (9) ◽  
Author(s):  
Camilly P. Pires de Mello ◽  
Xun Tao ◽  
Tae Hwan Kim ◽  
Michael Vicchiarelli ◽  
Jürgen B. Bulitta ◽  
...  

ABSTRACT Zika virus (ZIKV) infection is associated with serious, long-term neurological manifestations. There are currently no approved therapies for the treatment or prevention of ZIKV infection. Favipiravir (FAV) is a viral polymerase inhibitor with broad-spectrum activity. Our prior studies used static FAV concentrations and demonstrated promising activity. However, the anti-ZIKV activity of dynamic FAV concentrations has never been evaluated in a human cell line. Here we employed the hollow-fiber infection model (HFIM) to simulate the human pharmacokinetic (PK) profiles associated with the clinically utilized FAV dosage regimens against influenza and Ebola viruses and assessed the viral burden profiles. Clinically achievable FAV concentrations inhibited ZIKV replication in HUH-7 cells in a dose-dependent fashion (50% effective concentration = 236.5 μM). The viral burden profiles under dynamic FAV concentrations were predicted by use of a mechanism-based mathematical model (MBM) and subsequently successfully validated in the HFIM. This validated, translational MBM can now be used to predict the anti-ZIKV activity of other FAV dosage regimens in the presence of between-patient variability in pharmacokinetics. This approach can be extended to rationally optimize FAV combination dosage regimens which hold promise to treat ZIKV infections in nonpregnant patients.


2020 ◽  
Author(s):  
Sean Ekins ◽  
Melina Mottin ◽  
Paulo R. P. S. Ramos ◽  
Bruna K. P. Sousa ◽  
Bruno Junior Neves ◽  
...  

In the past decade we have seen two major Ebola virus outbreaks in Africa, the Zika virus in Brazil and the current outbreak of coronavirus disease which has been named "severe acute respiratory syndrome coronavirus 2" (SARS-CoV-2). There is a strong sense of Déjà vu as the world is caught flat footed without effective treatments to administer to patients. Our team has been actively involved in several small molecule drug discovery efforts for the preceding virus outbreaks. In 2014 we used machine learning to identify 3 new molecules to test for the Ebola virus and these were subsequently shown to be active in vitro and in vivo. We have also been involved in open science approaches that leverage the community to help. In 2016 we launched the OpenZika project as an IBM World Community Grid Project that used distributed computing power of volunteers to dock large numbers of compounds into Zika and related flavivirus targets. This led us into several collaborations in which we validated computational predictions in vitro. With both of these initiatives there was some knowledge of the virus, many compounds had already been tested in the case of Ebola, whereas for Zika initially all we had was the virus RNA sequence. In the current SARS-CoV-2 outbreak, this was a completely new virus and the scientists in China and elsewhere have started from scratch. In the space of a few weeks since the outbreak is acknowledged to have started, there are now compounds suggested as active in vitro and molecules repurposed in clinical trials. While this has been impressive, we propose there may still be gaps in our approach to drug discovery for such outbreaks. There is an opportunity to repurpose additional approved drugs for this virus and we now suggest how these might be identified leveraging prior work on MERS-CoV, SARS-CoV and other viruses. We also describe some of the immense challenges and limitations of the open antiviral drug discovery approaches we have been involved in.


Viruses ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 742 ◽  
Author(s):  
Hongzhuan Zhou ◽  
Xia Su ◽  
Lulu Lin ◽  
Jin Zhang ◽  
Qi Qi ◽  
...  

Canine parvovirus (CPV) is a common etiological agent of acute enteritis, which occurs globally in domestic and wild carnivores. Despite the widespread use of inactivated or live attenuated vaccines, the emergence of antigenic variants and the influence of maternal antibodies have raised some concerns regarding the efficacy of commercial vaccines. While no specific antiviral therapy for CPV infection exists, the only treatment option for the infection is supportive therapy based on symptoms. Thus, there is an urgent medical need to develop antiviral therapeutic options to reduce the burden of CPV-related disease. In this study, a cytopathic effect (CPE)-based high-throughput screening assay was used to screen CPV inhibitors from a Food and Drug Administration (FDA)-approved drug library. After two rounds of screening, seven out of 1430 screened drugs were found to have >50% CPE inhibition. Three drugs—Nitazoxanide, Closantel Sodium, and Closantel—with higher anti-CPV effects were further evaluated in F81 cells by absolute PCR quantification and indirect immunofluorescence assay (IFA). The inhibitory effects of all three drugs were dose-dependent. Time of addition assay indicated that the drugs inhibited the early processes of the CPV replication cycle, and the inhibition effects were relatively high within 2 h postinfection. Western blot assay also showed that the three drugs had broad-spectrum antiviral activity against different subspecies of three CPV variants. In addition, antiapoptotic effects were observed within 12 h in Nitazoxanide-treated F81 cells regardless of CPV infection, while Closantel Sodium- or Closantel-treated cells had no pro- or antiapoptotic effects. In conclusion, Nitazoxanide, Closantel Sodium, and Closantel can effectively inhibit different subspecies of CPV. Since the safety profiles of FDA-approved drugs have already been extensively studied, these three drugs can potentially become specific and effective anti-CPV drugs.


2018 ◽  
Vol 62 (10) ◽  
Author(s):  
Jean A. Bernatchez ◽  
Zunhua Yang ◽  
Michael Coste ◽  
Jerry Li ◽  
Sungjun Beck ◽  
...  

ABSTRACT Zika virus (ZIKV) has been linked to the development of microcephaly in newborns, as well as Guillain-Barré syndrome. There are currently no drugs available to treat ZIKV infection, and accordingly, there is an unmet medical need for the discovery of new therapies. High-throughput drug screening efforts focusing on indirect readouts of cell viability are prone to a higher frequency of false positives in cases where the virus is viable in the cell but the cytopathic effect (CPE) is reduced or delayed. Here, we describe a fast and label-free phenotypic high-content imaging assay to detect cells affected by the virus-induced CPE using automated imaging and analysis. Protection from the CPE correlates with a decrease in viral antigen production, as observed by immunofluorescence. We trained our assay using a collection of nucleoside analogues with activity against ZIKV; the previously reported antiviral activities of 2′-C-methylribonucleosides and ribavirin against the Zika virus in Vero cells were confirmed using our developed method. To validate the ability of our assay to reveal new anti-ZIKV compounds, we profiled a novel library of 24 natural product derivatives and found compound 1 to be an inhibitor of the ZIKV-induced cytopathic effect; the activity of the compound was confirmed in human fetal neural stem cells (NSCs). The described technique can be easily leveraged as a primary screening assay for profiling of the activities of large compound libraries against ZIKV and can be expanded to other ZIKV strains and other cell lines displaying morphological changes upon ZIKV infection.


2017 ◽  
Vol 4 (suppl_1) ◽  
pp. S55-S55 ◽  
Author(s):  
So-Yon Lim ◽  
Christa Osuna ◽  
Jessica Lakritz ◽  
Elsa Chen ◽  
Gyeol Yoon ◽  
...  

Abstract Background Zika virus (ZIKV) was first isolated from a sentinel rhesus monkey in 1947. ZIKV infection in humans is associated with serious neurological and reproductive complications. No antiviral or protective vaccine is yet available. Galidesivir an adenosine analog is a potent viral RNA-dependent RNA polymerase inhibitor with demonstrated broad-spectrum antiviral activity. Methods We have conducted four pre-clinical studies in rhesus macaques to assess the safety, antiviral efficacy and dosing strategies of galidesivir against ZIKV infection. Collectively, we have challenged 70 rhesus macaques by various routes using 1x105 TCID50of a Puerto Rican ZIKV isolate. We have evaluated galidesivir therapy administered via IM injection as early as 90 minutes and up to 72 hours after subcutaneous (SC) ZIKV challenge, and as late as 5 days after intravaginal (IVAG) challenge. In these studies, we evaluated the efficacy of a range of loading and maintence doses of galidesivir. The highest dose evaluated has been a loading dose of 100mg/kg BID followed by a maintenance dose of 25mg/kg BID for nine days. We followed multiple endpoints, including ZIKV RNA levels in plasma, urine, saliva, and cerebrospinal fluid. Immune activation, complete blood counts, chemistries and galidesivir pharmacokinetics were also monitored. Results Galidesivir was well-tolerated in all studies. All untreated controls developed high-level plasma viremia, and had readily detectable ZIKV RNA in CSF, saliva and urine post-infection. Animals treated in the first 24 hours after SC ZIKV challenge did not develop plasma viremia and were either negative or had significantly reduced ZIKV RNA in bodily fluids. Animals treated with galidesivir later (up to 72 hours) were partially protected; they had detectable plasma ZIKV RNA, but the onset was delayed and/or magnitude significantly reduced compared with controls. Animals infected IVAG were protected by galidesivir treatment up until day 5 after infection, with no blood viremia and significant reductions in ZIKV RNA in the CSF as compared with controls. Conclusion Galidesivir dosing in rhesus macaques was well-tolerated and offered significant protection against ZIKV infection. These results warrant continued study and clinical evaluation. Disclosures R. Taylor, BioCryst Pharmaceuticals: Employee, Salary; S. MacLennan, BioCryst: Employee, Salary; M. Leonard, BioCryst: Employee, Salary; E. Giuliano, BioCryst: Employee, Salary; A. Mathis, BioCryst Pharmaceuticals: Employee, Salary; E. Berger, BioCryst: Employee, Salary; Y. Babu, BioCryst: Employee, Salary; W. Sheridan, BioCryst Pharmaceuticals: Employee, Salary


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ziyang Fu ◽  
Bin Huang ◽  
Jinle Tang ◽  
Shuyan Liu ◽  
Ming Liu ◽  
...  

AbstractSARS-CoV-2 is the pathogen responsible for the COVID-19 pandemic. The SARS-CoV-2 papain-like cysteine protease (PLpro) has been implicated in playing important roles in virus maturation, dysregulation of host inflammation, and antiviral immune responses. The multiple functions of PLpro render it a promising drug target. Therefore, we screened a library of approved drugs and also examined available inhibitors against PLpro. Inhibitor GRL0617 showed a promising in vitro IC50 of 2.1 μM and an effective antiviral inhibition in cell-based assays. The co-crystal structure of SARS-CoV-2 PLproC111S in complex with GRL0617 indicates that GRL0617 is a non-covalent inhibitor and it resides in the ubiquitin-specific proteases (USP) domain of PLpro. NMR data indicate that GRL0617 blocks the binding of ISG15 C-terminus to PLpro. Using truncated ISG15 mutants, we show that the C-terminus of ISG15 plays a dominant role in binding PLpro. Structural analysis reveals that the ISG15 C-terminus binding pocket in PLpro contributes a disproportionately large portion of binding energy, thus this pocket is a hot spot for antiviral drug discovery targeting PLpro.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10480
Author(s):  
Mahmoud Kandeel ◽  
Yukio Kitade ◽  
Abdullah Almubarak

Following the recent emergence of SARS-CoV-2 or coronavirus disease 2019 (COVID-19), drug discovery and vaccine design to combat this fatal infection are critical. In this study, an essential enzyme in the SARS-CoV-2 replication machinery, RNA-dependent RNA polymerase (RDRP), is targeted in a virtual screening assay using a set of 1,664 FDA-approved drugs, including sets of botanical and synthetic derivatives. A set of 22 drugs showed a high docking score of >−7. Notably, approximately one-third of the top hits were either from natural products or biological molecules. The FDA-approved phytochemicals were sennosides, digoxin, asiaticoside, glycyrrhizin, neohesperidin, taxifolin, quercetin and aloin. These approved natural products and phytochemicals are used as general tonics, antioxidants, cell protectives, and immune stimulants (nadid, thymopentin, asiaticoside, glycyrrhizin) and in other miscellaneous systemic or topical applications. A comprehensive analysis was conducted on standard precision and extra precision docking, two-step molecular dynamics simulations, binding energy calculations and a post dynamics analysis. The results reveal that two drugs, docetaxel and neohesperidin, showed strong binding profiles with SARS CoV-2 RdRP. These results can be used as a primer for further drug discovery studies in the treatment of COVID-19. This initiative repurposes safe FDA-approved drugs against COVID-19 RdRP, providing a rapid channel for the discovery and application of new anti-CoV therapeutics.


Author(s):  
Weibao Song ◽  
Hongjuan Zhang ◽  
Yu Zhang ◽  
Rui Li ◽  
Yanxing Han ◽  
...  

AbstractZika virus (ZIKV) is an emerging pathogen associated with neurological complications, such as Guillain-Barré syndrome in adults and microcephaly in fetuses and newborns. This mosquito-borne flavivirus causes important social and sanitary problems owing to its rapid dissemination. However, the development of antivirals against ZIKV is lagging. Although various strategies have been used to study anti-ZIKV agents, approved drugs or vaccines for the treatment (or prevention) of ZIKV infections are currently unavailable. Repurposing clinically approved drugs could be an effective approach to quickly respond to an emergency outbreak of ZIKV infections. The well-established safety profiles and optimal dosage of these clinically approved drugs could provide an economical, safe, and efficacious approach to address ZIKV infections. This review focuses on the recent research and development of agents against ZIKV infection by repurposing clinical drugs. Their characteristics, targets, and potential use in anti-ZIKV therapy are presented. This review provides an update and some successful strategies in the search for anti-ZIKV agents are given.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rafael Corrêa ◽  
Igor de Oliveira Santos ◽  
Heloísa Antoniella Braz-de-Melo ◽  
Lívia Pimentel de Sant’Ana ◽  
Raquel das Neves Almeida ◽  
...  

AbstractGut microbiota composition can modulate neuroendocrine function, inflammation, and cellular and immunological responses against different pathogens, including viruses. Zika virus (ZIKV) can infect adult immunocompetent individuals and trigger brain damage and antiviral responses. However, it is not known whether ZIKV infection could impact the gut microbiome from adult immunocompetent mice. Here, we investigated modifications induced by ZIKV infection in the gut microbiome of immunocompetent C57BL/6J mice. Adult C57BL/6J mice were infected with ZIKV and the gut microbiota composition was analyzed by next-generation sequencing of the V4 hypervariable region present in the bacterial 16S rDNA gene. Our data showed that ZIKV infection triggered a significant decrease in the bacteria belonging to Actinobacteria and Firmicutes phyla, and increased Deferribacteres and Spirochaetes phyla components compared to uninfected mice. Interestingly, ZIKV infection triggered a significant increase in the abundance of bacteria from the Spirochaetaceae family in the gut microbiota. Lastly, we demonstrated that modulation of microbiota induced by ZIKV infection may lead to intestinal epithelium damage and intense leukocyte recruitment to the intestinal mucosa. Taken together, our data demonstrate that ZIKV infection can impact the gut microbiota composition and colon tissue homeostasis in adult immunocompetent mice.


Sign in / Sign up

Export Citation Format

Share Document