scholarly journals Influences of Annealing Temperature on the Optical and Structural Properties of Manganese Oxide Thin Film by Zn Doping from Sol-Gel Technique

2013 ◽  
Vol 123 (4) ◽  
pp. 741-745 ◽  
Author(s):  
S. Pishdadian ◽  
A.M. Shariati Ghaleno
2020 ◽  
Vol 981 ◽  
pp. 51-58
Author(s):  
Agus Geter Edy Sutjipto ◽  
Yit Pei Shian ◽  
Ali Shaitir ◽  
Mohamad Ashry Jusoh ◽  
Ari Legowo

This research deals with ambient energy harvesting by using zinc oxide thin film. The objectives of this thesis are to prove the ZnO film as a piezoelectric material can produce electric when vibration is applied and determine its optimal voltage. The thesis describes the sol gel spin coating technique to fabricate zinc oxide thin film. Zinc acetate dehydrate, absolute ethanol and diethanolamine were used in this thesis to act as sol gel precursor. Sol gel was coated on glass slide which wrapped by aluminum foil. The thin film was formed after preheating and annealing. The thin film was characterized by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Photoluminescence spectroscopy (PL) and Ultraviolet-visible spectroscopy (UV-Vis) as well as analyzed using vibration technique. From XRD results, the films were preferentially diffracted at around 65° which corresponding to (1 1 2) diffraction phase. From FESEM results, it was observed that when the spin speed was increased at same annealing temperature, the thickness was also decreased. When the annealing temperature was increased at same spin speed, both grain size and thickness were increased. From the PL results, there was only film with spin speed of 2000 rpm and annealing temperature of 300 °C had slightly left wavelength which was 380 nm. Annealing temperature would affect only the intensity of PL wavelength. From the results of UV-Vis, it was observed that when the spin speed was increased at same annealing temperature, the band gap was decreased. When the annealing temperature was increased at same spin speed, the band gap was decreased. Piezoelectric test had proven the ZnO film could produce electricity. The maximum voltage (20.7 mV) was produced by the ZnO film with spin speed of 2000 rpm and annealing temperature of 300 °C.


2002 ◽  
Vol 408 (1-2) ◽  
pp. 200-205 ◽  
Author(s):  
Hu-Yong Tian ◽  
Wei-Gen Luo ◽  
Ai-Li Ding ◽  
Jongwan Choi ◽  
Changho Lee ◽  
...  

2021 ◽  
Vol 127 (5) ◽  
Author(s):  
M. M. El-Desoky ◽  
Ibrahim Morad ◽  
Mohamed. A. Ali ◽  
Atif Mossad Ali ◽  
M. A. Sayed ◽  
...  

2012 ◽  
Vol 512-515 ◽  
pp. 1736-1739
Author(s):  
Li Li Zhang ◽  
Guo Qiang Tan ◽  
Meng Cheng ◽  
Hui Jun Ren ◽  
Ao Xia

Fe(NO3)3•9H2O and Bi(NO3)3•5H2O were used as raw materials. BiFeO3 thin films were prepared by sol-gel method. The effects of annealing temperatures on the morphology and dielectric property of the thin films were studied. XRD results show that the multi-crystal thin films with pure phase are obtained when annealed at 500°C and 550°C. But annealing at 580°C will lead to the appearance of Bi2.46Fe5O12 phase.AFM images show that as the increase of annealing temperatures the surface toughness of the thin film is decreased, but the surface undulation of the thin films is decreased gradually. Within the frequency range of 1KHz~1MHz, the dielectric constant of BiFeO3 thin films is kept over 125 and it does not change very much from 500°C to 580°C. Annealed at 550°C, the BiFeO3 thin films with the lower loss are obtained. At 1MHz, the dielectric loss is 0.12.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 111
Author(s):  
Rihui Yao ◽  
Xiao Fu ◽  
Wanwan Li ◽  
Shangxiong Zhou ◽  
Honglong Ning ◽  
...  

In this paper, the effects of annealing temperature and other process parameters on spin-coated indium oxide thin film transistors (In2O3-TFTs) were studied. The research shows that plasma pretreatment of glass substrate can improve the hydrophilicity of glass substrate and stability of the spin-coating process. With Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) analysis, it is found that In2O3 thin films prepared by the spin coating method are amorphous, and have little organic residue when the annealing temperature ranges from 200 to 300 °C. After optimizing process conditions with the spin-coated rotating speed of 4000 rpm and the annealing temperature of 275 °C, the performance of In2O3-TFTs is best (average mobility of 1.288 cm2·V−1·s−1, Ion/Ioff of 5.93 × 106, and SS of 0.84 V·dec−1). Finally, the stability of In2O3-TFTs prepared at different annealing temperatures was analyzed by energy band theory, and we identified that the elimination of residual hydroxyl groups was the key influencing factor. Our results provide a useful reference for high-performance metal oxide semiconductor TFTs prepared by the solution method.


2021 ◽  
Vol 23 (09) ◽  
pp. 1078-1085
Author(s):  
A. Kanni Raj ◽  

Indium Lead Oxide (ILO) based Metal Oxide Thin Film Transistor (MOTFT) is fabricated with Lead Barium Zirconate (PBZ) gate dielectric. PBZ is formed over doped silicon substrate by cheap sol-gel process. Thin film PBZ is analysed with X-ray Diffraction (XRD), Ultra-Violet Visible Spectra (UV-Vis) and Atomic Force Microscope (AFM). IZO is used as bottom gate to contact Thin Film Transistor (TFT). This device needs only 5V as operating voltage, and so is good for lower electronics <40V. It shows excellent emobility 4.5cm2/V/s, with on/off ratio 5×105 and sub-threshold swing 0.35V/decade.


Sign in / Sign up

Export Citation Format

Share Document