scholarly journals A pubescence color gene enhances tolerance to cold-induced seed cracking in yellow soybean

2021 ◽  
Vol 71 (4) ◽  
pp. 467-473
Author(s):  
Naoya Yamaguchi ◽  
Chika Suzuki ◽  
Yoko Yamashita ◽  
Mineo Senda
Keyword(s):  
Crop Science ◽  
2002 ◽  
Vol 42 (1) ◽  
pp. 71 ◽  
Author(s):  
Daijun Yang ◽  
Takehiro Nakamura ◽  
Norihiro Ohtsubo ◽  
Koji Takahashi ◽  
Jun Abe ◽  
...  
Keyword(s):  

Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1001
Author(s):  
Jagadeesh Sundaramoorthy ◽  
Gyu Tae Park ◽  
Hyun Jo ◽  
Jeong-Dong Lee ◽  
Hak Soo Seo ◽  
...  

The enzyme flavonoid 3′,5′-hydroxylase (F3′5′H) plays an important role in producing anthocyanin pigments in soybean. Loss of function of the W1 locus encoding F3′5′H always produces white flowers. However, few color variations have been reported in wild soybean. In the present study, we isolated a new color variant of wild soybean accession (IT261811) with pinkish-white flowers. We found that the flower’s pinkish-white color is caused by w1-s3, a single recessive allele of W1. The SNP detected in the mutant caused amino acid substitution (A304S) in a highly conserved SRS4 domain of F3′5′H proteins. On the basis of the results of the protein variation effect analyzer (PROVEAN) tool, we suggest that this mutation may lead to hypofunctional F3′5′H activity rather than non-functional activity, which thereby results in its pinkish-white color.


1998 ◽  
Vol 18 (7) ◽  
pp. 4337-4346 ◽  
Author(s):  
Vincent Colot ◽  
Vicki Haedens ◽  
Jean-Luc Rossignol

ABSTRACT Upon insertion, transposable elements can disrupt or alter gene function in various ways. Transposons moving through a cut-and-paste mechanism are in addition often mutagenic when excising because repair of the empty site seldom restores the original sequence. The characterization of numerous excision events in many eukaryotes indicates that transposon excision from a given site can generate a high degree of DNA sequence and phenotypic variation. Whether such variation is generated randomly remains largely to be determined. To this end, we have exploited a well-characterized system of genetic instability in the fungus Ascobolus immersus to perform an extensive study of excision events. We show that this system, which produces many phenotypically and genetically distinct derivatives, results from the excision of a novel Ds-like transposon,Ascot-1, from the spore color gene b2. A unique set of 48 molecularly distinct excision products were readily identified from a representative sample of excision derivatives. Products varied in their frequency of occurrence over 4 orders of magnitude, yet most showed small palindromic nucleotide additions. Based on these and other observations, compelling evidence was obtained for intermediate hairpin formation during the excision reaction and for strong biases in the subsequent processing steps at the empty site. Factors likely to be involved in these biases suggest new parallels between the excision reaction performed by transposons of thehAT family and V(D)J recombination. An evaluation of the contribution of small palindromic nucleotide additions produced by transposon excision to the spectrum of spontaneous mutations is also presented.


Genetics ◽  
1998 ◽  
Vol 150 (1) ◽  
pp. 251-263 ◽  
Author(s):  
Utpal Bhadra ◽  
Manika Pal Bhadra ◽  
James A Birchler

Abstract We have investigated the effect of dosage-dependent trans-acting regulators of the white eye color gene in combinations to understand their interaction properties. The consequences of the interactions will aid in an understanding of aneuploid syndromes, position-effect variegation (PEV), quantitative traits, and dosage compensation, all of which are affected by dosage-dependent modifiers. Various combinations modulate two functionally related transcripts, white and scarlet, differently. The overall trend is that multiple modifiers are noncumulative or epistatic to each other. In some combinations, developmental transitions from larvae to pupae to adults act as a switch for whether the effect is positive or negative. With position-effect variegation, similar responses were found as with gene expression. The highly multigenic nature of dosage-sensitive modulation of both gene expression and PEV suggests that dosage effects can be progressively transduced through a series of steps in a hierarchical manner.


1969 ◽  
Vol 51 (1) ◽  
pp. 71-76
Author(s):  
H. Irizarry ◽  
J. Howard Ellison ◽  
Portia Orton

Two mature, dark-green asparagus plants (one female and one male) termed "persistent-green" were selected in a New Jersey asparagus field on November 11, 1959, when the other plants were yellow or brown. The two persistent-green plants were crossed; each of them was crossed also with normal plants for the genetic study of this character. A secondary part of this study was to determine the effect of the color gene or genes on the plant-pigment system by means of spectrophotometric analyses. An attempt also was made to identify the persistent-green mutants in the seedling stage. The study of the phenotypes of 17 F1, F2, and reciprocal BC1 progenies indicated that persistent-green color in asparagus is inherited as a single recessive gene. There was a large quantitative difference in chlorophyll and carotene between the persistent-green and normal plant complexes in October, but not in July. Apparently the persistent-green mutants retain chlorophyll and carotene much later in the season than do the normal plants. No qualitative difference in pigment was found in either July or October. Asparagus seedlings were easily classified as to persistent-green (green foliage) or normal (yellow foliage) in the greenhouse when the plants were 6 weeks old.


1996 ◽  
Vol 121 (6) ◽  
pp. 1028-1031 ◽  
Author(s):  
Mark J. Bassett

The inheritance of hilum ring color in common bean (Phaseolus vulgaris L.) was investigated using various genetic tester stocks developed by backcrossing recessive alleles into a recurrent parent stock 5-593 with seedcoat genotype P [C r] D J G B V Rk, viz., mar BC2 5-593, mar BC3 5-593, mar v BC2 5-593, mar d BC2 5-593, and mar d BC3 5-593. The current hypothesis is that the margo character is controlled by mar and hilum ring color is controlled by d but expresses only with mar. The V locus controls flower and seedcoat color. The allelism test crosses `Citroen' (P C d j g b vlae) × mar BC3 5-593 and `Citroen' × mar d BC3 5-593 demonstrated that mar is allelic with j and that the putative d in mar d BC3 5-593 is allelic with the d in `Citroen'. Thus, the former genetic tester stocks mar BC3 5-593 and mar d BC3 5-593 are reclassified as j BC3 5-593 and d j BC3 5-593, respectively, because mar is a synonym for j. Similarly, the former genetic tester stock mar v BC2 5-593 is reclassified as j v BC2 5-593. The interaction of j with d expresses as loss of color in the hilum ring. The development of the white-seeded genetic tester stock P cu d j BC3 5-593 was described in detail, where the all-recessive tester `Prakken 75' was used as the source of the recessive alleles. The previously reported work showing that the partly colored seedcoat gene t interacts with mar to control seedcoat pattern is now interpreted to mean that the joker (J) locus interacts with t to produce partly colored seedcoat patterns. The genetic loci D and V were found to segregate independently. The common gene for dull seedcoats (asper, asp) is discussed and contrasted with j.


2009 ◽  
Vol 37 (1) ◽  
pp. 3-8
Author(s):  
Shinji SASAZAKI ◽  
Munehiro USUI ◽  
Yuki YOSHIZAKI ◽  
Masaaki TANIGUCHI ◽  
Hiroshi HASEBE ◽  
...  

2006 ◽  
Vol 20 (3) ◽  
pp. 576-584 ◽  
Author(s):  
Vinod K. Shivrain ◽  
Nilda R. Burgos ◽  
Karen A. K. Moldenhauer ◽  
Ronald W. Mcnew ◽  
Tomilea L. Baldwin

Experiments were conducted to determine the inheritance of resistance in crosses between imazethapyr-resistant rice and red rice. Past experiments on red rice control, using the Clearfield rice technology, resulted in outcrossing between Clearfield rice and Stuttgart strawhull red rice. The F2 generation of these spontaneous crosses were characterized with respect to inheritance of imazethapyr resistance, leaf color and leaf pubescence, and seed shattering, pubescence, color, and size. Agronomic traits of hybrids were also observed in relation to their parents. To determine the segregation of resistance among F2 phenotypes, the response of three- to four-leaf plants to imazethapyr was scored 3 wk after application as resistant (R, no imazethapyr symptoms), susceptible (S, death of plants), or intermediate (I, stunted plants). R, I, and S phenotypes segregated in a 1:2:1 ratio in the F2 generation. Two- or three-gene inheritance was documented for leaf and seed characteristics. A wide range in onset of flowering (70 to 130 d after planting) was observed in F2 families, although 6% of the plants did not flower during the growing season. F2 plants were taller and had more tillers than any of their parents. Resistance to imazethapyr is associated with a single, incompletely dominant allele.


Sign in / Sign up

Export Citation Format

Share Document