scholarly journals DIESEL INJECTOR PUMP WITH RING CONTROL VALVE

Author(s):  
Fanil' Gabdrafikov ◽  
Irshat Aysuvakov ◽  
Ilgiz Galiev

The studies were carried out with the aim of modernizing the pump injector with a hydraulic actuator of the HEUI system plunger with the development of a control valve model based on a split elastic ring that provides fast fuel injection control. The upgraded device differs from the existing ones in that instead of a control freely floating valve (ball) or a poppet valve with springs, a valve in the form of a split elastic ring is installed in the valve assembly. One end of this ring is fixed rigidly, the other is freely movable to block the drain channel of the liquid. The canal overlaps the free edge of the ring when the electromagnet is turned on (installed with a gap inside the ring), and also (in the absence or malfunction of the electromagnet) from the valve itself running under the pressure of the supplied fluid. When upgrading the pump injector by the proposed method and using an annular control valve with electronic control (with optimal ring parameters), a new technical effect is achieved - reducing the response time of the control valve. This is due to the fact that the free edge of the split elastic ring, like a mechanical multiplier, blocks the drain canal π times faster than the valve stroke when it rises from the pressure of the fluid flow or signal when the electromagnet is on. The ring valve simultaneously acts as a spring to return to its original position, simplifying the design as much as possible. In the course of research, a new mathematical expression was derived for calculating the valve stroke depending on its design parameters. Using this formula, the optimal parameters of the control ring valve of the pump injector were established, which affect the quality of fuel injection in a wide range of diesel operation: diameter - 20 mm, ring width - 12 mm, thickness - 0.46 mm, diameter of the control fluid supply canal - 3 mm.

2020 ◽  
Vol 15 (1) ◽  
pp. 68-75
Author(s):  
Fanil' Gabdrafikov ◽  
Irshat Aysuvakov ◽  
Ilgiz Galiev

The studies were carried out with the aim of modernizing the pump injector with a hydraulic actuator of the HEUI system plunger with the development of a control valve model based on a split elastic ring that provides fast fuel injection control. The upgraded device differs from the existing ones in that instead of a control freely floating valve (ball) or a poppet valve with springs, a valve in the form of a split elastic ring is installed in the valve assembly. One end of this ring is fixed rigidly, the other is freely movable to block the drain channel of the liquid. The canal overlaps the free edge of the ring when the electromagnet is turned on (installed with a gap inside the ring), and also (in the absence or malfunction of the electromagnet) from the valve itself running under the pressure of the supplied fluid. When upgrading the pump injector by the proposed method and using an annular control valve with electronic control (with optimal ring parameters), a new technical effect is achieved - reducing the response time of the control valve. This is due to the fact that the free edge of the split elastic ring, like a mechanical multiplier, blocks the drain canal π times faster than the valve stroke when it rises from the pressure of the fluid flow or signal when the electromagnet is on. The ring valve simultaneously acts as a spring to return to its original position, simplifying the design as much as possible. In the course of research, a new mathematical expression was derived for calculating the valve stroke depending on its design parameters. Using this formula, the optimal parameters of the control ring valve of the pump injector were established, which affect the quality of fuel injection in a wide range of diesel operation: diameter - 20 mm, ring width - 12 mm, thickness - 0.46 mm, diameter of the control fluid supply canal - 3 mm.


1986 ◽  
Vol 108 (3) ◽  
pp. 351-357
Author(s):  
J. P. Karidis ◽  
S. R. Turns

The dynamic performance of electromagnetic actuators driving on-off control valves is optimized numerically by combining hybrid lumped-parameter/distributed-parameter actuator models with an efficient constrained optimization technique. Two examples of constrained actuator optimization are presented where up to eight design parameters are optimized. One example problem involves minimizing variations in the response time of a fuel injection control valve caused by manufacturing and assembly tolerances, while the other example deals with minimizing the response time of a high-speed gas sampling valve.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 662
Author(s):  
Nikita A. Filatov ◽  
Anatoly A. Evstrapov ◽  
Anton S. Bukatin

Droplet microfluidics is an extremely useful and powerful tool for industrial, environmental, and biotechnological applications, due to advantages such as the small volume of reagents required, ultrahigh-throughput, precise control, and independent manipulations of each droplet. For the generation of monodisperse water-in-oil droplets, usually T-junction and flow-focusing microfluidic devices connected to syringe pumps or pressure controllers are used. Here, we investigated droplet-generation regimes in a flow-focusing microfluidic device induced by the negative pressure in the outlet reservoir, generated by a low-cost mini diaphragm vacuum pump. During the study, we compared two ways of adjusting the negative pressure using a compact electro-pneumatic regulator and a manual airflow control valve. The results showed that both types of regulators are suitable for the stable generation of monodisperse droplets for at least 4 h, with variations in diameter less than 1 µm. Droplet diameters at high levels of negative pressure were mainly determined by the hydrodynamic resistances of the inlet microchannels, although the absolute pressure value defined the generation frequency; however, the electro-pneumatic regulator is preferable and convenient for the accurate control of the pressure by an external electric signal, providing more stable pressure, and a wide range of droplet diameters and generation frequencies. The method of droplet generation suggested here is a simple, stable, reliable, and portable way of high-throughput production of relatively large volumes of monodisperse emulsions for biomedical applications.


Author(s):  
X. Lachenal ◽  
P. M. Weaver ◽  
S. Daynes

Conventional shape-changing engineering structures use discrete parts articulated around a number of linkages. Each part carries the loads, and the articulations provide the degrees of freedom of the system, leading to heavy and complex mechanisms. Consequently, there has been increased interest in morphing structures over the past decade owing to their potential to combine the conflicting requirements of strength, flexibility and low mass. This article presents a novel type of morphing structure capable of large deformations, simply consisting of two pre-stressed flanges joined to introduce two stable configurations. The bistability is analysed through a simple analytical model, predicting the positions of the stable and unstable states for different design parameters and material properties. Good correlation is found between experimental results, finite-element modelling and predictions from the analytical model for one particular example. A wide range of design parameters and material properties is also analytically investigated, yielding a remarkable structure with zero stiffness along the twisting axis.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Raed I. Bourisli ◽  
Adnan A. AlAnzi

This work aims at developing a closed-form correlation between key building design variables and its energy use. The results can be utilized during the initial design stages to assess the different building shapes and designs according to their expected energy use. Prototypical, 20-floor office buildings were used. The relative compactness, footprint area, projection factor, and window-to-wall ratio were changed and the resulting buildings performances were simulated. In total, 729 different office buildings were developed and simulated in order to provide the training cases for optimizing the correlation’s coefficients. Simulations were done using the VisualDOE TM software with a Typical Meteorological Year data file, Kuwait City, Kuwait. A real-coded genetic algorithm (GA) was used to optimize the coefficients of a proposed function that relates the energy use of a building to its four key parameters. The figure of merit was the difference in the ratio of the annual energy use of a building normalized by that of a reference building. The objective was to minimize the difference between the simulated results and the four-variable function trying to predict them. Results show that the real-coded GA was able to come up with a function that estimates the thermal performance of a proposed design with an accuracy of around 96%, based on the number of buildings tested. The goodness of fit, roughly represented by R2, ranged from 0.950 to 0.994. In terms of the effects of the various parameters, the area was found to have the smallest role among the design parameters. It was also found that the accuracy of the function suffers the most when high window-to-wall ratios are combined with low projection factors. In such cases, the energy use develops a potential optimum compactness. The proposed function (and methodology) will be a great tool for designers to inexpensively explore a wide range of alternatives and assess them in terms of their energy use efficiency. It will also be of great use to municipality officials and building codes authors.


2014 ◽  
Vol 532 ◽  
pp. 41-45 ◽  
Author(s):  
Myung Jin Chung

Analytic model of electromagnetic linear actuator in the function of electric and geometric parameters is proposed and the effects of the design parameters on the dynamic characteristics are analyzed. To improve the dynamic characteristics, optimal design is conducted by applying sequential quadratic programming method to the analytic model. This optimal design method aims to minimize the response time and maximize force efficiency. By this procedure, electromagnetic linear actuator having high-speed characteristics is developed.


2021 ◽  
pp. 54-59
Author(s):  
L. R. Yurenkova ◽  
O. A. Yakovuk ◽  
I. V. Morozov

The article provides examples of how the device known as the «angle reflector» a few decades ago has been increasingly used in various fields of science and technology in recent years. Angle reflectors are designed to change (reflect) optical and radar rays in the direction, opposite to the original direction. At present, angle reflectors are widely used to ensure the safety of road transport on dangerous road sections. Radio wave reflectors have the same design as optical ones; therefore, in radio detection and location, angle reflectors are used to send warning signals to ship radars on bridge supports, beacons and buoys. Modern angle reflectors attached to meteorological probes allow determining the direction and speed of the wind at high altitude, which is especially important in the study of the outer space. In recent years, devices have been developed to improve the accuracy of radar stations calibration. The examples of graphical calculation of angle reflectors presented in the article clearly demonstrate the primary role of geometry in the design activity of an engineer. The graphical calculation is based on the theoretical positions of projective geometry. The design and calculation of optical systems is carried out by the graphoanalytic method, since only with a combination of graphical and analytical methods it is possible to accurately calculate the course of a light beam, laser, or radio wave and thereby determine the design parameters of the devices. The article focuses on a graphical method for calculating two types of angle reflectors using orthogonal projection, due to which modern engineers will be able to create more up-to-date designs of optical systems with a wide range of applications.


1999 ◽  
Author(s):  
William G. Broadhead ◽  
D. Theodore Zinke

Abstract The design of an airbag restraint system presents a classic engineering challenge. There are numerous design parameters that need to be optimized to cover the wide range of occupant sizes, occupant positions and vehicle collision modes. Some of the major parameters that affect airbag performance include, the airbag inflator characteristics, airbag size and shape, airbag vent size, steering column collapse characteristics, airbag cover characteristics, airbag fold pattern, knee bolsters, seat, seat belt characteristics, and vehicle crush characteristics. Optimization of these parameters can involve extremely costly programs of sled tests and full scale vehicle crash tests. Federal Motor Vehicle Safety Standards (FMVSS) with regard to airbag design are not specific and allow flexibility in component characteristics. One design strategy, which is simplistic and inexpensive, is to utilize a very fast, high output gas generator (inflator). This ensures that the bag will begin restraining the occupant soon after deployment and can make up for deficiencies in other components such as inadequate steering column collapse or an unusually stiff vehicle crush characteristic. The use of such inflators generally works well for properly positioned occupants in moderate to high-speed frontal collisions by taking advantage of the principle of ridedown. When an airbag quickly fills the gap between the occupant and the instrument panel or steering wheel it links him to the vehicle such that he utilizes the vehicle’s front-end crush to help dissipate his energy, thus reducing the restraint forces. Unfortunately, powerful airbag systems can be injurious to anyone in the path of the deploying airbag. This hazard is present for short statured individuals, out of position children or any occupant in a collision that results in extra ordinary crash sensing time. Currently, the National Highway Traffic Safety Administration (NHTSA) is proposing to rewrite FMVSS 208 to help reduce such hazards.


Author(s):  
D.A. Neganov ◽  
◽  
A.E. Zorin ◽  
O.I. Kolesnikov ◽  
G.V. Nesterov ◽  
...  

The methodology of laboratory modeling of the loading of utor welded joint of the tank is presented. The methodology is based on testing of the special design sample. It allows under uniaxial tension on the typical servo-hydraulic machines to reproduce in the zone of a utor welded joint the combined action of bending and shear forces, similar to that which occurs during the operation of a vertical cylindrical tank. To assess the distribution of the stress-strain state in the proposed design of the sample under its loading, the finite element modeling was performed in the ANSYS software package. It showed the fundamental correspondence of the stress distribution in the zone of the utor node in the sample and in the real tank. The experimental studies consisted in carrying out tests for the durability of a series of 16 samples loaded with the maximum force in the cycle, causing the calculated stresses in the zone of the welded utor node in the range of 100–200 % from the maximum permissible ones. The obtained results showed that the maximum loaded zone, where the destruction of the samples occurred, is the near-seam zone of the utor welded joint on the inside of the tank. This corresponds to the statistics of the real tank failures. It is established that the developed methodology ensures the possibility of carrying out correct resource tests of the tank utor welded joints. It is also possible to vary the stress-strain state scheme within a wide range in the area of the utor welded joint by changing the design parameters of the test sample. In compliance with the regulated welding technologies and the absence of unacceptable defects in the welded joint, the utor node has a high resource, which significantly exceeding 50 years of the tank operation.


2021 ◽  
Author(s):  
U. Bhardwaj ◽  
A. P. Teixeira ◽  
C. Guedes Soares

Abstract This paper assesses the uncertainty in the collapse strength of sandwich pipelines under external pressure predicted by various strength models in three categories based on interlayer adhesion conditions. First, the validity of the strength models is verified by comparing their predictions with sandwich pipeline collapse test data and the corresponding model uncertainty factors are derived. Then, a parametric analysis of deterministic collapse strength predictions by models is conducted, illustrating insights of models’ behaviour for a wide range of design configurations. Furthermore, the uncertainty among different model predictions is perceived at different configurations of outer and inner pipes and core thicknesses. A case study of a realistic sandwich pipeline is developed, and probabilistic models are defined to basic design parameters. Uncertainty propagation of models’ predictions is assessed by the Monte Carlo simulation method. Finally, the strength model predictions of sandwich pipelines are compared to that of an equivalent single walled pipe.


Sign in / Sign up

Export Citation Format

Share Document